

- □ Prélèvement
- Purification
- ☐ Stockage-Transport
- **□** Utilisations
- □ Traitement
- □Rejet

Pompage

- Analyse des prérogatives administratives, et prise en compte des périodes d'étiages.
- Analyse des besoins en eaux
- Elaboration de scénarios d'optimisation de l'eau

Evaluation des coûts et

économie d'eau en % pour rédui 200000 volume de pompage dans rivièr

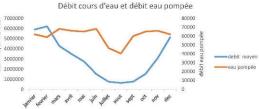
25%

15%

effluent à traiter atelier A effluent à traiter atelier B

Accompagnement dans la mise en place des solutions

retour sur investissement


Toutes Industries

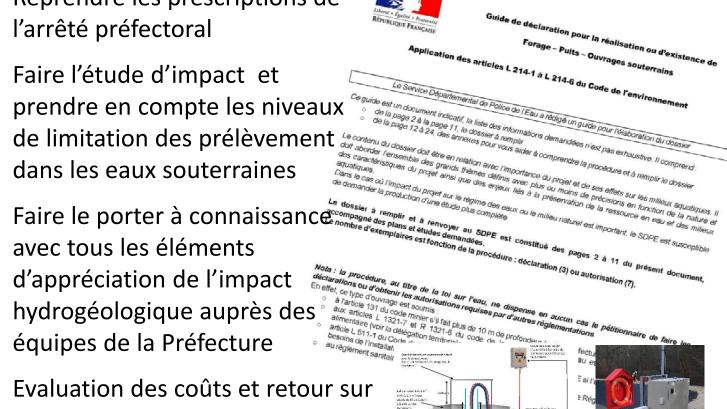
		N-2	N-1	N			Comment	nn elke	
	atelier A	482562	475866	483516	m3		Consommati	on site	
	atelier B	247851	365872	258961	m3	600000			atelier A
Eau Industrielle	atelier C	184572	175684	195647	m3	500000		_	
	Total	914985	1017422	938124	m3				atelier B
	Moyenne par semaine	17596	19566	18041	m3	400000			■ atelier C
Eau Filtrée	Station eau filtrée	24750	15864	16846	m3	300000 -	-		
cau rittree	Moyenne par semaine	476,0	252,5	0	m3	200000			Station eau filtrée
	Compt. Ateliers	31452	32763	24628	m3	200000			Compt. Ateliers
Eau potable	Compt. Bâtiments administratifs	8569	9456	8457	m3	100000	ш.		Compt. Bâtiments
	Total	40021	42219	33085	m3	0 N-2	N-1		administratifs

470627 231476 23

797246 553528 76

Remise en état des réseaux (élimination des fuites)

- □ Prélèvement
- □ Purification
- ☐ Stockage-Transport
- □ Utilisations
- □ Traitement
- □ Rejet



Forage

Toutes Industries

- □ Prélèvement
- □ Purification
- ■Stockage-**Transport**
- □ Utilisations
- □ Traitement
- □ Rejet

- Reprendre les prescriptions de l'arrêté préfectoral
- Faire l'étude d'impact et prendre en compte les niveaux de limitation des prélèvement dans les eaux souterraines
- hydrogéologique auprès des équipes de la Préfecture
- Fvaluation des coûts et retour sur investissement
- Accompagnement dans la mise en place des solutions

Récupération eaux de toiture

Transport

- □ Prélèvement
- Purification
- ☐ Stockage-Transport
- **□** Utilisations
- □ Traitement
- □Rejet

Dossier incluant
Désamiantage
Panneaux photovoltaïques
Renforcement charpente

Etude économique de faisabilité

APS captation et stockage

APD

Chantier

Stockage - Epreuve

Papeterie

- □ Prélèvement
- Purification
- ☐ Stockage-Transport
- **□** Utilisations
- ☐ Traitement
- □Rejet

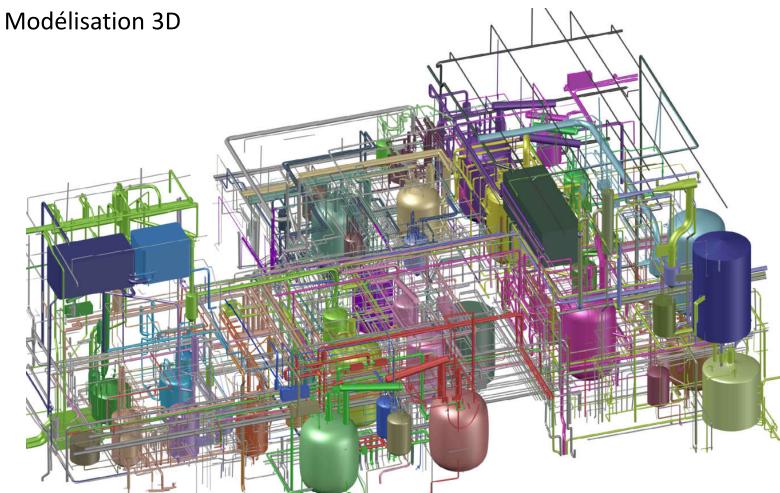
Recueil de données

Établissement Gammes

Détermination des lots

Consultations fournisseurs

Suivi de chantiers


Tuyauteries

■ Purification

□ Prélèvement

- ☐Stockage-Transport
- □ Utilisations
- **□** Traitement
- □Rejet

Scans

Pharmacie-

Cosmétique

□ Prélèvement

□ Purification

☐Stockage-

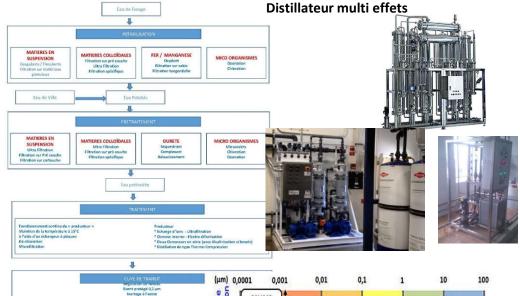
Transport

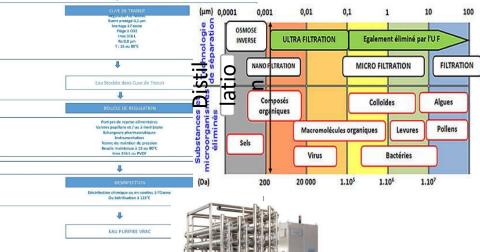
□ Utilisations

□ Traitement

□Rejet

Gestion de l'Eau




Osmose

- Analyse du besoin
- Recueil de données
- Etat de l'art
- Dimensionnement des utilités
- Consultation fournisseurs
- Évaluation des coûts

Chimie

Ultrafiltration

Ensemble Filtre à Sable / Filtre à Charbon

Laiterie

- □ Prélèvement
- □ Purification
- ☐ Stockage-Transport
- Utilisations
- **□**Traitement
- □Rejet

- Analyse de l'existant
- Vérification des dimensionnements fournisseurs
- Déchloration sur CAG
- Déferrisation/ démanganisation sur FAS
- Évaluation des coûts
- Conseils

Elément de dimensionnement usuel en déchloration

- ❖ 5 à 15 volumes d'eau par volume de charbon et par heure
 - → Soit pour 20 m3/h de 1,5 à 4 m3 de charbon
- → 1 m3 (500 kg, densité 0,5) installé, avec des concentrations en chlore élevées
 - Sous dimensionnement

Attention! Aucune certitude sur l'élimination du ClO2 sur CAG.

- →Dépend du pH, du débit, de la T° et de la dureté de l'eau
- Pas d'isotherme défini, existe uniquement pour eau de javel.
- Il faut mesurer le ClO2 en entrée et en sortie de CAG et avoir 2 filtres CAG en parallèles

Paramètre	Fréquence	Consigne	Actions correctives
Delta P filtre micro filtration	1 fois/jour	< 0,7 bars	Changer les filtres
Pression avant pompe surpression	1 fois/jour	Pour information	Pour information. Un mini à 2 bars est impératif
Pression sortie pompe	1 fois/jour		Pour information
Débit perméat	1 fois/jour	Débit nominal osmose + ou− 15%	Si inférieur : nettoyage membranes Si supérieur : diminuer le débit sur la pompe HP en bridant la pompe avec vanne ¼ de tour
Débit recirculation	1 fois/jour	< 10% du débit perméat	Et ajuster en fonction du rendement hydraulique souhaité
Débit Concentrat	1 fois/jour		
Delta P Pompe HP- Concentrat	1 fois/jour	2,5 – 3 bars	Prévoir nettoyages
PC 191T sur le trasar	1 fois/jour	8 – 12 ppm	Vérifier amorçage pompe doseuse
ORP lu sur Trasar	1 fois/jour	Pour information	
Conductivité appoint	1 fois/jour	Pour information	
Conductivité perméat	1 fois/jour	< 50 μS/cm	Nettoyage / Changement des membranes
Calcul du aux de rétention des sels	1 fois/jour	Supérieur à 96%	Nettoyage / Changement des membranes
Rendement hydraulique	1 fois/jour	75 à 80%	Ajustement des débits

□Prélèvement

- □ Purification
- ☐ Stockage-Transport
- **□** Utilisations
- ☐ Traitement
- □Rejet

Pré-Dimensionnement de CIP Effluents Agro – Potabilisation - Skid eau de source

- sourceAnalyse du besoin Recueil de données
- Calcul conso produits
- Détermination des séquences de lavage
- Détermination des coûts de lavage et autonomie,

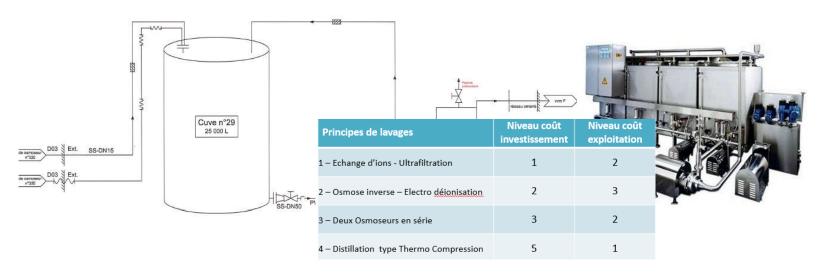
Traitement	de
l'eau	

	espa mileiv	alle de temp	15:			-		
intervalle de temps souhait (h)	Durée lavage court (h)	Durée lavage long (h)	Fréquence lavage court (h-1)	Fréquence lavage long (h- 1)	Norde lavages courts	Nbr de la vages longs	Durée production	
24	1,00	6,00	0,25	0,04	5,85	0,5337	14,943074	
Ra_: équation nombres de f≡fréquence de lavages cour	lavages/jour a	rvec :I≈interv	alle de temps	souhaité, d=durée	delavage	court, Dadurée	de lavage los	

Séquence des lavages :										
Lavage court:	Ordre	1	2	3	4	5	6	7	8	9
Selon séquence établie	Action	Vidange	Mis e en eau	CIP alcalin	Retrolavage	Vidange	Mise en eau	Retrolavage	Flush	Rinçagecour
	Réactif			NaOH(g/l)						
	Concentrat*			4						
Lavage long:	Ordre	1	2	3	4	5	6	7	8	9
Selon séquence établie	Action	Vidange	Mise en eau	CIP alcalin	Retrolavage	Vidange	Mise en eau	CIP Ultrasil	Retrolavage	Vidange
	Réactif			NaOH(g/l)				Ultrasil (%) +HOCI(ppm)		
	Concentrat*]		4				2 200	1	
	Ordre	10	11	12	13	14	15	16	17	18
	Action	Mise en eau	Retrolavage	Rinçage court	CIP acide	Retrolavage	Vidange	Mise en eau	Retrolavage	Rinçagecoun
	Réactif				HCI (%)					
	Concentrat*				1					

Cal cul de la consomma	tion en réactif en fonctionne	ment de ro	utine					
Equipement Fab 1								
	Intervalle de temps (h)	Nbriavages (Consommation	Nor Lavages Longs	Consommation (kg)			
	intervalle de temps (n)		NaOH (kg)		NaOH	Ultrasil	Javel	HCI
	24	5,85	11,7	0,53	1,07	7,26	0,43	3,18
	Capacité contenant (kg)		27		27	27	23	23
	Autonomie (par Intervalle	de temps)	2,3		25,3	3,7	53,4	7,2
Equipement Fab 2								
	Intervalle de temps (h)	Nbrlavages	Consommation	Nbr lavages longs	Consommation (kg)			
		courts	NaOH (kg)		NaOH	Ultrasil	Javel	HCI
	24	5,85	4,7	0,53	0,43	2,90	0,17	1,07
	Capacité contenant (kg)		27		27	27	23	23
	Autonomie (par Intervalle	de temps)	5,8		63,2	9,3	133,6	21,5

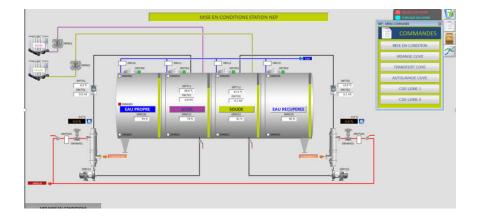
Consomation par cycle:						
Lavage court:					Fab 1	Fab 2
	Soute	Fab 1	Fab 2	Volume Nep (1)	500	200
	Cm(kg/i)*:	0.64	0.64			
	11" utili sation (g/1):	- 4	4	* Cr. KaOil - Max e valuritare	No OFF WAS CO.	-2.13+30.5
	Valume NIP (I):	500	200			
	V intro/cycle NEP (I)	3,125	1,25			
	kg/oyde NEP:	2	0.8			
	prix/kg (G):	0,37	0,37			
	prix/cyde NEP (O :	0,74	0.296			
	points füt (kg):	27	27			
	ntr cycle/füt :	13,5	33,75			
Lavage Fong:	T.					
	Soute	Fab 1	Fab 2	Lincol	Fab 1	Fab 2
	Cm(kg/l)*:	0.64	0.64	[]"utilisation (ppm):	200	20
	()" utili sation (g/l):	. 4	.4	[]"atilisation(g/i):	0,2	0.
	Volume NOP (II):	500	200	Volume NEP (I):	500	20
	Viatra/cycle NEP (II):	3,125	1,25	Crnchlore actif (g/l):	150	15
	kg/cyde NEP :	2	0,8	V intro/cyde NEP 61:	0,67	0,2
	prix/kg (C):	0,37	0,37	p (kg/l) :	1,21	1,2
	arix/cyde NEP (f.):	0.74	0,290	kg/cyde NEP :	0.81	0.1
	pořdsfüt (kg) :	. 27	22	prix/kg(f):	0.34	0.3
	nitr cycle/fut :	13.5	33.75	pris/cycle NEP (4):	0,274	
				poids füt (kg):	23	2
	All trees if	UF	NF.	nbr oyd o/1út :	28,5	71.
	p(kg/l):	1.36	1.36			
	% utilisation :	. 2	2	Acide Chlorhydnigue	UF	NF.
	Valume NIP (I):	500	200	On (kg/l):	1,19	
	Vintralitycle NEP (I)	10	- 4	% urt fisurtion :	- 1	
	kg/cycle NEP:	13,6	5.94	Volume MEP (1):	500	20
	prix/kg (f0):	. 3	3	Vintra/cyde NEP (1):	- 5	
	prix/cyde NEP (C):	40,80	16,32	kg/cycle NEP :	5.95	2.3
	podsfút(kg):	27	27	prix/kg (€):	0.39	0.3
	ntr cycle/füt :	1,99	4.90	prix/cycle NEP (€):	2,3205	
				poids füt (kg):	23	2.
				nbr cvd e/füt :	3.9	9.


Nettoyage de ligne de fabrication

Chimie

- □ Prélèvement
- Purification
- ☐ Stockage-Transport
- **□** Utilisations
- ☐ Traitement
- □Rejet

- Analyse du besoin, Recueil de données
- Etat de l'art eau osmosée
- État de l'art NEP appliquée au sujet

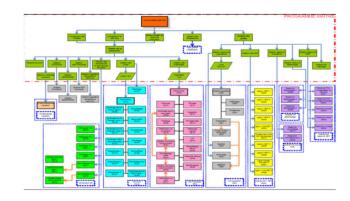


Installation de NEP automatique

Lait de chèvre

- □ Prélèvement
- Purification
- ☐ Stockage-Transport
- **□** Utilisations
- **□**Traitement
- □Rejet

- Analyse du besoin Recueil de données
- Rédaction cdc
- Implantation
- Aménagement des salles en prenant en compte les cloisonnements, les accès, la réfection des sols, l'évacuation des eaux et le passage des différents réseaux et énergies
- Suivi des travaux, recettage, formation opérateurs, mise en place des procédures
- Durée du projet 4 mois

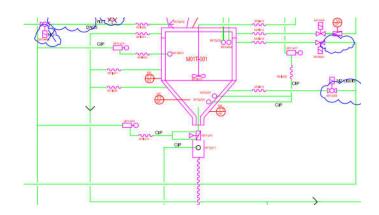


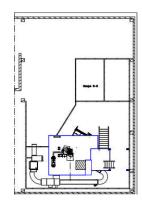
Analyse fonctionnelle process fromagerie

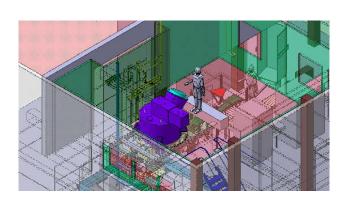
Fromagerie

- □ Prélèvement
- Purification
- ☐ Stockage-Transport
- **□** Utilisations
- □ Traitement
- □Rejet

- Automatisation procédé de fabrication de 25 fromages, dont le NEP
- CDC et Consultation fournisseurs de supervision.

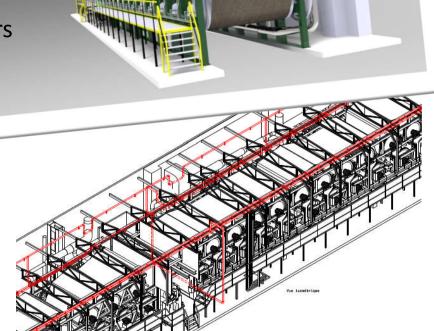



NEP conditionnement ultra-froid


Ferments

- □ Prélèvement
- Purification
- ☐ Stockage-Transport
- □ Utilisations
- ☐ Traitement
- □Rejet

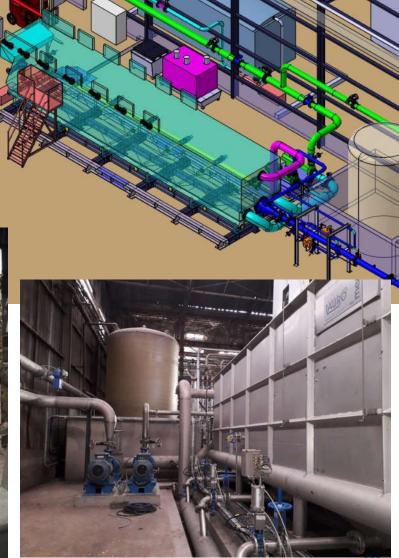
- Analyse du besoin Recueil de données
- Conception du local
- Cahier des charges, consultation fournisseurs
- Suivi de chantier



Sprinklage

- □ Prélèvement
- Purification
- ☐ Stockage-Transport
- □ Utilisations
- ☐ Traitement
- □Rejet

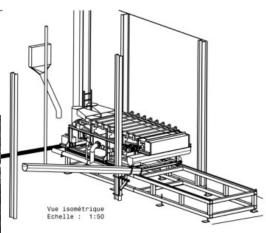
- Analyse du besoin Recueil de données
- APS APD
- Consultation fournisseurs
- Suivi de chantier



Microflotation

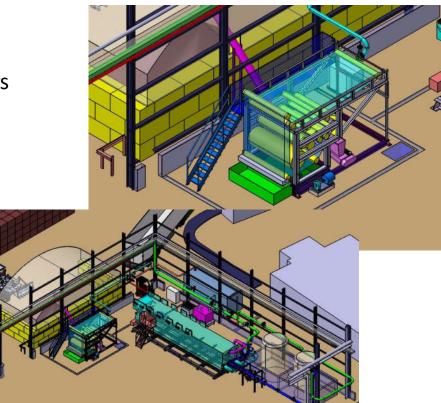
- □ Prélèvement
- Purification
- ☐ Stockage-Transport
- □ Utilisations
- □ Traitement
- □Rejet

- APS APD Implantation
- Cahier des charges, consultation fournisseurs
- Suivi de chantier


Egouttage des boues

- □ Prélèvement
- Purification
- ☐ Stockage-Transport
- □ Utilisations
- □ Traitement
- □Rejet

- APS APD Implantation
- Cahier des charges, consultation fournisseurs
- Suivi de chantier



Pressage des boues - Winkelpress

- □ Prélèvement
- Purification
- ☐ Stockage-Transport
- □ Utilisations
- **□** Traitement
- □Rejet

- APS APD Implantation
- Cahier des charges, consultation fournisseurs
- Suivi de chantier

Pressage des boues – Filtre presse

Béton

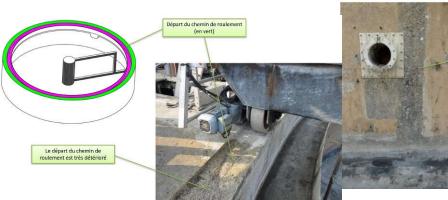
- □ Prélèvement
- □ Purification
- ☐Stockage-Transport
- **□** Utilisations
- **□** Traitement
- □Rejet

- Etude du fonctionnement actuel / Etat des lieux
- Préconisations-Implantation
- Cahier des charges, consultation fournisseurs
- Suivi de chantier

Maintenance Filtre à boues vertes

- □ Prélèvement
- Purification
- ☐ Stockage-Transport
- □ Utilisations
- **□** Traitement
- □Rejet

- Etude des lieux
- Cahier des charges, consultation fournisseurs
- Suivi de chantier


Audit Clarificateur

Papeterie

- □ Prélèvement
- Purification
- ☐ Stockage-Transport
- □ Utilisations
- **□** Traitement
- □Rejet

- Inspection
- Rédaction du rapport de défauts

Cloquage généralisé de cette résine

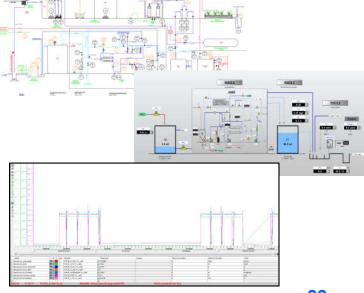
Mise en Conformité de STEP

- □ Prélèvement
- Purification
- ☐ Stockage-Transport
- **□** Utilisations
- □ Traitement
- □Rejet

 Etude du fonctionnement actuel / Etat des lieux

> Analyse de la filière et du process de traitement Dimensionnement / capacité de traitement Diagnostic des ouvrages et du matériel installé Mise en évidence des dysfonctionnements observés Normes de rejet Analyse fonctionnelle

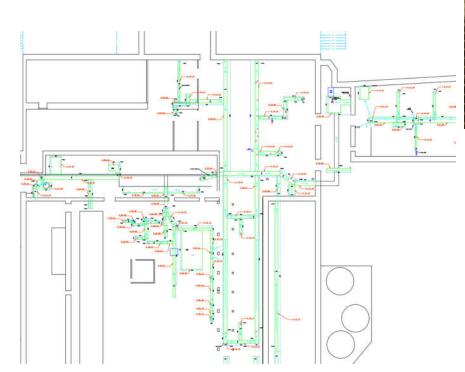
- Etat de l'art
- Préconisations


aménagements et remplacement/rajout d'équipements Améliorer et fiabiliser les performances des outils épuratoires

Mise en conformité de la STEP Apporter les conseils pour faciliter l'exploitation et réduire les coûts associés

- Mise à jour des références documentaires
- Cahier des charges, consultation fournisseurs
- Mise en place d'une gestion informatisée de l'ensemble de la station d'épuration
- Suivi de chantier

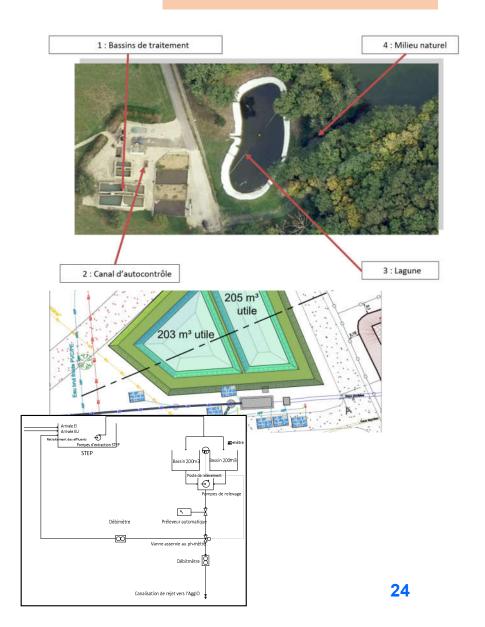
LAITERIE



Cartographie des égouts

- □ Prélèvement
- Purification
- ☐ Stockage-Transport
- □ Utilisations
- □ Traitement
- □Rejet

- Recheche sur site
- Prise de mesures
- Réalisation de plans

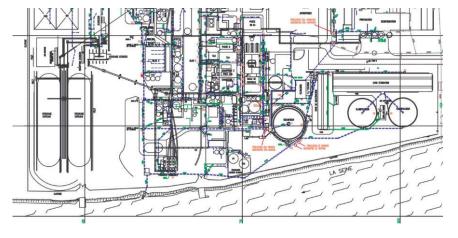


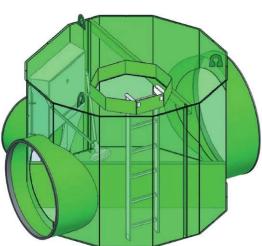
Comptage rejet vers step agglo

Pharmacie

- □ Prélèvement
- Purification
- ☐ Stockage-Transport
- □ Utilisations
- **□** Traitement
- □Rejet

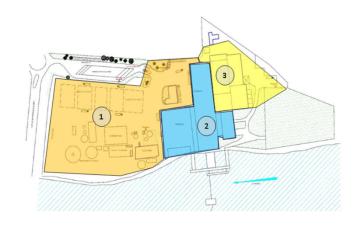
- Analyse de l'existant
- Recommendations
- APS
- APD Consultation
- Chantier
- Réception conformité




Rejet eaux pluviales vers la Seine

- □ Prélèvement
- Purification
- ☐ Stockage-Transport
- **□** Utilisations
- **□** Traitement
- □Rejet

- Analyse de l'existant
- Cartographie
- Débourbeurs déshuileurs
- Déversoirs d'orage
- Obturateurs automatiques
- Mesure du débit rejeté



Rétention eaux d'incendie

Papeterie

- □ Prélèvement
- Purification
- ☐ Stockage-Transport
- **□** Utilisations
- □ Traitement
- □Rejet

- Analyse de l'existant
- Cartographie
- Recommendations
- APS
- APD
- Chantier

MURET DE RETENTION A L'INTERIEUR DU BATIMENT

□Prélèvement

- Purification
- ☐ Stockage-Transport
- **□** Utilisations
- □ Traitement
- □Rejet

Création bassin incendie

Analyse des installations existantes (recherche des réseaux enterrés)

Analyse Eaux pluviales Eaux de ruissellement

Déshuileur débourbeur

Géomètre

APS technique, organisationnel et règlementaire, calculs


APD

Plans de prévention

Suivi de chantiers

Suivi HSE

Matériaux

Réfection bassin incendie

Confiserie

- □ Prélèvement
- □ Purification
- ☐ Stockage-Transport
- **□** Utilisations
- □ Traitement
- □Rejet

Analyse des besoins

Analyse des installations existantes (recherche des réseaux enterrés)

APS technique, organisationnel et

règlementaire

APD

Plans de prévention

Suivi de chantiers

Suivi HSE

