

DE LA RECHERCHE À L'INDUSTRIE

New Energies – Integrated Approach

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

MAIN TOPICS – NEW ENERGIES, AN INTEGRATED APPROACH

DIGITAL TOOLS FOR ENERGY

Commissariat à l'énergie atomique et aux énergies alternatives

MAIN TOPICS – NEW ENERGIES, AN INTEGRATED APPROACH

Commissariat à l'énergie atomique et aux énergies alternatives

- Sensors and system integration
- Non destructive testing

- Asset management
- Complex system optimization
- Decision making
- Prediction

- Vulnerabilities identification
- Secure Industrial IOT
- Anomaly-based network intrusion detection & reaction
- End-to-end encryption
- Trusted ledgers for data and service

DIGITAL TOOLS FOR ENERGY

Commissariat à l'énergie atomique et aux énergies alternatives

RENEWABLE ENERGY PRODUCTION

High efficiency solar PV solutions

2 PV everywhere

3 Make the PV smart

PV SOLUTIONS

- Large scale industrialization of heterojunction technology towards european eco-system
- Focus on the perovskite / heterojunction tandem technology as a long-term goal
- Increase efficiency by reducing electrical and optical losses
- Develop new PV modules high-level requirements
- Increase modules lifetime
- Imagine ecodesigned modules with low footprint from materials to end-of-life
- Optimize productivity by using digital tools for modelling, diagnostics and monitoring
- Adapt the system to include the flexibility needs

PILOT LINE & PLATFORM

SHJ Pilot line (Since 2005)

2020 - World Record efficiency of +25%

2020 - World Record

efficiency of 20% on an

11cm² module

2018

- High efficiency SHJ cells
- High performances modules
- IEC-61215 & 61730 certification

Tandem technology : silicon & perovskite

30% 2023 @cell level

Perovskite platform

High performances perovskite cells and modules (20% on 11 cm²)
Stability assessment via specific materials encapsulation

SILICON HETERO-JUNCTION

(SHJ)

Key Features

- Top efficiency 25%
- High quality materials
- Reduced number of process steps compared to upgraded standard technologies
- Use of ultrathin wafers (<100µm) due to outstanding surface passivation capabilities
- Compatible with advanced interconnection solutions (xBB)

Assets

- Bifacial cells and modules, with a low temperature coefficient
- Compatible with smartwire swct
- High throughput, High efficiency & Higher energy yield

Success stories

SUCCESS STORY

SHJ CELL : NEW PV PRODUCTION SITE IN EUROPE

CEA and Enel Green Power have reached a heterojunction solar cell record efficiency of 25.0% active area (213 cm²) on M2 wafer on industrial pilot line at INES. World-class result certified by CalTeC

https://www.enelgreenpower.com/

Green Power

PV EVERY-WHERE

Key Features

- Develop PV Technologies with high efficiency at competitive cost
- Custom Integration even with high-level requirements (weight, flexibility, irradiations...)
- Enables energy selfsufficiency

Success Stories

Stratobus

DEFENCE & CONSTRUCTION Light modules (4 kg/m²)

MONITORING

Ultra-light modules (700

g/m²)

ThalesAlenia A the / to was a the for Space

> TELECOM Stratospheric module

MARITIME APPLICATION Specific & Bifacial modules

ROAD INTEGRATION Multi-use modules

High value-added segments Highly positive externalities segments cea

SUCCESS STORY

STRATOBUS

CEA has developed for Thales a working module answering all requirements for a real stratospheric airship.

The next step will be the integration of modules on the Stratobus, an autonomous, multi-mission stratospheric airship, midway between a drone and a satellite.

https://www.thalesgroup.com/en/worldwide/space/new s/whats-stratobuS

©Thales Alenia Space/Briot except first version by ©Thales Alenia Space/Master Image Programmes

MAKE THE PV SMART

Key Features

- Software (SW) solutions for forecast & dynamic management (considering financial and technical constraints/objectives)
- Components sizing & system design :
 - SW designed for various applications and requirements, including production prediction depending on the forecast
 - In-house libraries of models
- Energy Management System (EMS) :
 - Predictive and real-time control strategies
 - Mathematical optimization methods
 - Information system for feedback of operating data and control

Success Stories

PV production prediction - Steady Sun

FROM LOCAI TO GLOBAL

STEADY SUN

Development of an algorithm for PV production prediction, at minutes, hours and days levels and according to different regions.

ENERGY STORAGE & HYDROGEN VECTOR

1 Batteries

2 Hydrogen

BATTERIES (FOR STATIONNARY & MOBILITY APPLICATIONS)

Key Features

- A positionning all along the value chain for 25 years
 - From materials to components and packs
 - Characterization & modeling
 - Electrodes, cells & modules
 - LCA/recycling
 - Safety

Assets

- A unique battery platform in Europe focusing on lithium-ion battery development (to boost battery performances, improve reliability and cut costs)
 - Including close relationships with industrial partners on all the value chain

Success stories

 Various battery experimentation projects: Mettaliance, Iveco, Renault...

MATERIALS & TESTS PLATFORM

cea

Cells & modules design; battery development and characterization; electrochemical, mechanical, thermal behavior...

NEW ! Battery Platform extension at Pessac, 350 m² for Combinatorial Synthesis & High Throughput Screening, Surface & Interface Engineering :

- Vacuum deposition techniques
- Thin Films
- Complex Materials
- Automated Screening

BATTERIES (SUCCESS STORIES)

Characterization & Multi-scale modelling

BATTERIES (FROM MATERIAL **SYNTHESIS** TO ASSEMBLY

Key Features

- Li-ion, Li-metal, from gram to kg
- **Positive electrode material** : High voltage Spinel Oxides, High Capacity Layered Oxides; LiFePO4 & other polyanionic materials, New cathode materials (rocksalt, glasses,...)
- Negative electrode material : High power/safety/lifetime, Ti-bases anodes, High capacity Si/C composites, Li metal
- Electrolyte : Liquid (salts, solvents, additives), Gel (i.e. SolgainTM), Solid (polymer, inorganic, glass, hybrid)
- Inks & electrodes : mix (10ml to 60l)
- Enduction : lab coater, pre-pilot & pilot scale
- Assembly from button-size to dozen-Ah batteries

Assets

- Anhydrous lab (about 1000m²)
- Increase performances (power energy, durability),
- Decrease costs (economical, environmental, risks)
- Widen operational conditions (temperature, form factor)
- Beyond conventional Li-Ion Batteries : Many battery chemistries using Li ions or other ions (Na, K, Mg, Al,...), Different cell designs, Alternative processes

Lithium-sulfur

All solid state (Li, Na)

Sodium-ion

Hybrid Supercapacitors

Flexible

Redox Flow

Ni-based

Organic

Metal-air (Li)

Mg-, Al-, K- ion

Primary

PLATFORM

BATTERIES (SAFETY TEST PLATFORM)

Key Features

- All kinds of abuse tests : **Electrical**, **Thermal**, **Mechanical**
- Systematic measurements (Voltage, current and temperature profiles, HD camera)
- Specific measurements and analyses (IR camera, Gas and volume, composition Any other specific need...)

BATTERIES (MULTI-SCALE MODELLING & SIMULATION)

Key Features Common approach for batteries and PEMFC - Close link between Modelling & Caracterization

- Model development :
 - Truly multi-scale
 - Multi-physics: electro-chemical, transport phenomena, heat transfer, mechanics
 - Depends on the scale of interest & the issues at stake
 - Predictive models : Performance, Durability, Safety
- **Software development :** Development of reference codes, Interoperable codes, HPC computations

- Database management : Material and cell database
 - Automation of Data collection, Treatment for model parametrization, Analysis
- Advanced experimental characterizations
 - **Support to modelling :** Observation of the phenomena, Characterization of the parameters, Validation of the models
 - Operando and at all scales
 - World-class equipment and teams : CEA nano-characterization platform; ESRF Synchrotron ; ILL neutron scattering

cea

SUCCESS STORY

BATTERY ENERGY STORAGE SYSTEM (BESS)

BESS Management – Operation followup & predictive maintenance

- State, solicitation, diagnosis and health indicators implementation, tracking and analysis
- Control laws & strategies of use tracking and analysis
- Maintenance operation forecasting & planning
- Development of an algorithm for SoH calculation and other ageing markers
- SoH extrapolation to calculate the remaining lifetime

SUCCESS STORY

AEROSPACE : SAFETY FIRST AT A COMPETITIVE COST

Battery packs design for aerospace applications where safety is one of the top priorities Hybrid E-Fan Plus Batteries for hybrid-electric planes Oshkosh, Wisconsin USA July 2016

CityAirbus Batteries for eVTOL Donauwörth, Germany, May 2019

Skyways Batteries and BMS for Drones Singapor, february 2018

Vahana (A³) Batteries for **eVTOL** Pendleton, California USA May *2018* E-Fan Batteries for all-electric planes Lydd UK-Calais France

Traversée, July 2015

OneWeb Batteries for Satellites February 2019

SIGMA CELLS (COMMUTED ARCHITECTURE)

otonohm

Key Features

- BMS function with reconfigurable architecture, enabling chargers and engine inverter functions
- Signal generator
- Continuity of service with deficient cell(s) isolation
- Up to 20% autonomy
- Increased battery life (up 15%)
- For stationary or nomadic storage

Assets

- Technical means at the best worldwide level
- Skills across the entire value chain (from the electrochemical cell to the full system)

Success stories

- Nomadic application Otonohm
- Stationnary application SwitchESS

Hydrogen transport Hydrogen production by electrolysis Hydrogen embrittlement **High-Temperature** Hydrogen Carriers Electrolysis (HTE) Levellized Costs of H2 (LCOH) L Environmental Impact (LCA analysis) ↑ Safety - Reliability ↑ Durability ↑ Sustainability ↑ Safety - Reliability Hydrogen conversion Fuel cells low T° - PEMFC* Hyperbaric storage for transport Fuel cells High T° - SOFC* Liquid massive storage ↓ Levellized Costs of Energy (LCOE) ↓ Environmental Impact (LCA analysis) ↓ Levellized Costs of H2 (LCOH) L Environmental Impact (LCA analysis) ↑ Durability ↑ Safety - Reliability ↑ Durability

From production to transport, storage and conversion, CEA works on the whole value chain. Hydrogen storage *PEMFC : Proton Exchange Membrane Fuel Cell *SOE : Solid Oxid Electrolysis - HTE *SOFC: Solid Oxid Fuel Cell

AT CEA

HYDROGEN ACTIVITY

CARBON-FREE HYDROGEN PRODUCTION

TECHNOLOGY

HYDROGEN PRODUCTION (HIGH TEMPERATURE ELECTROLYSIS)

HTE TESTING EQUIPMENTS (PERFORMANCE AND DURABILITY)

Key Features

- System test : up to stack box 100 kW
- Characterization of BoP components and of the behaviour of the stacks in real environment
- System able to operate in SOEC, SOFC, and reversible SOFC/SOEC

Electro-chemical test rig (Single cells Æ 50 mm)

Single

- i-V curves, durability test (up to 10000h),
 - Electrochemical impedance
 spectroscopy
 - Sensors: Gas tighness of H₂ and O₂ compartments, T, P, ΔP
 Gas chromatography

Stacks

Electrochemical test rig (large stacks 6 kW) Pressurized test rig (30 bar) upon construction

Pressurized test rig 30 bars

Electro-chemical test rig (SRU and small stacks 3 kW)

SRU

HYDROGEN PRODUCTION (HIGH TEMPERATURE ELECTROLYSIS)

Key Features

- Clean Hydrogen efficient production technology (84% LHV efficiency at 700°C) with a low environmental impact via high temperature steam electrolysis
- Building a strong HTE French ecosystem with the first up-to-scale 300 kW demonstrator in 2023.
- Industrialisation of the reversible technology (HTE) also able to operate in reversible mode
- The main objective is the launching of a Gigafactory in 2025

Assets

15 years of expertise in HTE

Success stories

The Genvia joint venture will focus on the development and industrial deployment of a game-changing electrolyzer technology for clean hydrogen production

Schlumberger

CHEMICAL HYDROGEN STORAGE &TRANSPORT

Key Features

- Hydrogen is chemical bonded to an organic or inorganic material for safe storage
- Solid storage using lightweight element B, Mg, Na, N...
 - H₂ yield up to 12 %, stable at 85 °C, low impurities, easy novel synthesis
 - Hydrogen is released by thermolysis or hydrolysis
 - Assessment of product synthesis reliability
 - Using by-product to optimize the circular economy of hydrogen by enhancing product regeneration at competitive cost

Liquid storage using organic molecule

- liquid at atmospheric conditions, no H₂ gas, no loss during storage, Low toxicity, non-explosive and non-flammable liquids.
- H₂ routing involves transporting a liquid using existing or dedicated infrastructures dedicated to liquid transport
- New CEA molecule, efficient catalyst and optimized reactor

Assets

A full suite of tools and expertises to develop materials (molecule, catalyst, chemical processes...) and tank/reactor design with LCA / economical assessment.

BNH_x M_xM₂ BNH_x M_xM₂ H_yM_y(BH₄)_m.(NH₃)_m M_xM₂(BH₄)_m.(NH₃) M_xM₂(BH₄)_m.(NH₃) M_xM₂(BH₄)_m.(NH₃) TEA-BCl₃ TEA-BCl₃ TEA-HCl

HYDROGEN STORAGE & TRANSPORT (GASEOUS STORAGE)

Key Features

- Design of H₂ Composite Vessels and abusive testing for gaseous storage
- Type IV tank set up and structure
- Liner (function : H2 tightness)
- Composite Overwrapped Shell (function: pressure withstand)
- Type IV tank design and calculation
- Abaqus (2D & 3D finite elements)
- + Composicad (fibers trajectories calculation)
- + CEA Customized Plug-in FiWiQus®
- Multi-instrumented test : pressure, temperature, optical fibers, strain gauges, acoustic emission, LVDT, fast camera, 3D digital image correlation

Assets

• Expertise & Testing Facilities : impact, burst, drop (up), leak (bottom), fire (up), Guntest (Bottom)

THE CATHARE CODE (FOR HYDROGEN APPLICATIONS SIMULATION)

Key Features

- Thermal-hydraulic simulation of multiphase flow dynamics
- Code for thermohydraulic analysis, fluid flow simulation in industrial processes
- Used for the design, the safety assessment and real time simulation of **complex systems**
- Support REFPROP database for dealing with different fluids (H₂...)
- Safety in cryogenic conditions : Sizing of the safety device & Thermal flux arriving on the cryogenic components
- Performant & user-Friendly HMI « GUITHARE »

Assets

- 40 years of development
- Thermal-hydraulic simulation at system and component scale of multiphase flow dynamics
- Safety analysis and design purpose –

plant or components

- Quantify the conservative analysis margins
- Define and verify emergency procedures
- Specific module developments and CATHARE code licencing

HYDROGEN STORAGE &TRANSPORT (EMBRITTLEMENT)

Key Features

- Analysis of Hydrogen embrittlement (HE) on metal under Hydrogen gas or gas blends pressure
- Quantification & understanding of mechanisms observed under H₂
- Interactions between H and dislocations / vacancies / microstructure (traps), consequence on mechanical properties
- H content in the micro-structure
- Impurities & gas mix effects
- Lifetime prediction (development of criteria, modelling)

Assets

A full suite of tools and expertises to study possible embrittlement phenomenon on materials

Success stories

- Hydrogen embrittlement in pipes
- Mathryce European project

storengy

Disc test < 100 MPa H₂

Mechanical testing up to 40 MPa bar H₂

cea

SUCCESS STORY

HYDROGEN EMBRITTLEMENT IN PIPES

Impact of hydrogen embrittlement on steel, at lab and industrial scales. Understanding the impact of natural gas and H_2 mix on networks components and pipes.

PEMFC PEMFC PLATFORM

PEMFC (MULTI-SCALE MODELLING & SIMULATION)

Key Features

Common approach for batteries and PEMFC - Close link between Modelling & Caracterization

- Model development :
 - Truly multi-scale
 - Multi-physics: electro-chemical, transport phenomena, heat transfer, mechanics
 - Depends on the scale of interest & the issues at stake
 - Predictive models : Performance, Durability, Safety
- **Software development :** Development of reference codes, Interoperable codes, HPC computations

- Database management : Material and cell database
 - Automation of Data collection, Treatment for model parametrization, Analysis

- Advanced experimental characterizations
 - **Support to modelling :** Observation of the phenomena, Characterization of the parameters, Validation of the models
 - Operando and at all scales
 - World-class equipment and teams : CEA nano-characterization platform; ESRF Synchrotron ; ILL neutron scattering

HYDROGEN CONVERSION (PEMFC)

Key Features

- 4kW/L stack
- 700W/L system

Assets

- A fuel cell platform with advanced technologies and flexible processes that meet manufacturers' unique prototyping needs: form ink formulation to system integration & durability tests
 - 500sqm space
 - 6M€ investment
 - 20 test benches
 - 10 to 20 patents/year
 - More than 10 industrial partners

Success stories

- Main CEA achievements in terms of system integration
- Future development roadmap CEA-Symbio

SUCCESS STORY

ENERGY OBSERVER

Energy Observer is self-sufficient in energy boat, with zero emissions. The CEA has developed of compact model of PEM electrolyser, which can produce up to 4 Nm3 per hour of pure hydrogen, and consumes 3.66 litres of deionised water per hour. https://www.energy-observer.org/

ENERGY GRIDS

1 Scenario study & analysis

- **2** Optimal EMS design : multi-scales, multi-vectors, multi-criteria
- **3** Digital tools & modelling
- **4** Thermal systems for energy efficiency
- 5 Electrical conversion components & Systems

cea

Strategic Expertise

Techno-economic feasability study and design

Regional demonstrators design

Selection of the right technologies and preparation of master plans

Analysis of the innovative solution sutainability based on real-use concepts and apply relevant business models

Up-to-scale demonstrators codesign, with management système, monitoring, and transfer to operators

ENERGY GRIDS AT CEA

With various competencies in conversion technologies, experimental platforms, demonstrators and digital tools, a unique offer to meet the energy transition of Territories and ecoindustrial parks.

*

ENERGY SYSTEMS (CONVERSION)

1111 1111

France

steadyby

steadySat

stead

Hour

PLATFORM

COMPLEX ENERGY SYSTEMS PLATFORMS

Already available :

PISE (Platform Smart Grid INES) < 1MW – Multi-vector in a Semi-vitrual environment

- « Control/Power hardware-in-the loop »
- Real-condition technical validation
- EMS & Systems testing
- Robustness to flaws, impact of real-time communication

Coming-up soon :

France

SMART CAD (Living Lab) >10 MW – equivalent to 5000 inhabitants consumption

Existing uses monitoring, demonstrators Consumption 40GWh gas, with140 buildings, 113 GWh (eq.Aix-en-Pce) , 200 VE with 110 charging points steady

steadySat

LES OUTILS LO

stead

Cybersecurity Data management

- Cybersecurity
- Natural Gas
- Electric vehicle
- Hydrogen
- Hydraulic network

- Storage selection &
- system management

ENERGY SYSTEMS (TERRITORIAL **DEMONSTRATORS**)

GRHYD

Injection into the gas *network* to supply a new district Natural Gas- H_2 fuel for **GNV** buses

	17			334	
ful tarrer	(many)	Service .			
and the second second	Canit			t.	
440. Y	of stress 2	10 Lat.	Lon Lan	Y	2
117 (12)		The sea	and a second	ALC: NOTICE	
M Same	-	-245	And Address of the owner owne	A Designation	325
AND THE PARTY OF	firms yet	A BUR ANALYS	Tanan ala	NINA STAT	
100					
H. Teal	Inth Franchistory	Autor and	- 181	00000	
H. Teal	Tell Paratana		- 191	00000	

creation

- Jupiter
- Management of surplus from renewable energy production

France

- *Massive storage* of electrical power
- Gas network decarbonation

TOTEM

100% self-sufficient in electrical power

steady

steadySat

LES OUTILS LO

stead

Latest technology *integration* : electrolyzer AME 5 kW, PEM 10 kW, storage 100 kg H₂, 66 KWc of PV, batteries storage

- Techno-economic study • Control and sizing software Demonstrator control tool
- Impact of Natural Gas-H₂ mix (SOFC, network materials compressors)

- Advanced energy management
 - Bifacial Heterojunction CEA technology - 9kWc

SMARTGRID, CONVERSION & ENERGY EFFICIENCY PROJECTS

SMARTGRID, CONVERSION & ENERGY EFFICIENCY PROJECTS

steady

TECHNOLOGY DIGITAL TOOLS & MODELLING

Key Features

- Digital tools for multi-scale and multi-vector energy systems,
- Modelling from components to systems and grids

Masterplan | Sizing | Simulation | Control | Data management | Decision-making

CEA SYSTEMIC APPROACH Metal Coating 4 5 Cooling Electricity Production Absportion Cooling Machine Heat from ORC : Heat to Electricity smokes Heat Rejection 80°C Heat Rejection 2 40-60°C Furnaces Work Hardeners & Thermal Storage **Tension** Planning Industrial Heat Solar Pre-Heating Pump 7 Post-treatment Hot Air Inspection Factory

Idealization of industrial process energy optimisation

THERMAL SYSTEMS FOR ENERGY EFFICIENCY

Energy Efficiency for industry:

- Waste heat recovery & use
- Thermal components development (heat exchangers, absorption cold production, organic Rankine cycle, heat storage)

EXPERTISE IN THERMAL SYSTEMS

Key Features

- **Thermal energy :** Heat transfer : conduction, convection, radiation
- Thermo-hydraulics: laminar, turbulent, two-phase flows,
- Thermal and thermodynamic systems : heat exchangers (heat transfer intensification and fouling), Organic Rankine Cycles, Absorption Cycles for heat and cold production
- **Simulation and experimental loops :** air, water and oil loops, heat storage dedicated loops at different temperature levels up to demonstrators (2MWh), instrumentation for different flow rates and temperature ranges
- Complementarity with Nuclear Division expertise :
- Thermomechanical behaviour and Mastery of usual codes (RCC-MRx, CODAP, ASME ...)
- Special Heat transfer fluids: supercritical CO₂, molten salts, Sodium, PbLi, Helium, Nitrogen

Asset

- Good knowledge of the industrial context in the thermal field : heat exchangers manufacturers and users
- Waste heat recovery and conversion

THERMAL SYSTEMS PLATFORMS

Heat transfer and Fouling

- Performances and fouling of water/water heat exchangers 150°C, 10
- Performances of air/air or air/water heat exchangers, Up to 850 °C, /
- Particulate fouling of air/water heat exchangers, up to 150°C, air flow

Heat Storage

- Hot water tank for thermocline stability analysis
- Sensible Heat storage with rocks & oil (<300°C)
- Latent Heat Storage (from phenomenological loop with paraffin up to high tempe steam storage 450°C)

Electronic cooling

- Various industrial applications: batteries, LEDs, computers, ver aeronautics, spatial (0 gravity) ...
- Various heat pipes configuration (capillary, pulsated)
- Ventilation, water circulation, PCM thermalisation

Asset

Highly accurate Instrumentation expertise with various fluids

POWER ELECTRONICS

PLATFORN

POWER ELECTRONICS PLATFORM

Key Features

- Power Electronics Platforms:
- 200 mm GaN epitaxy tool
- Power GaN/Si technology (diodes and transistors)
- Packaging & Power modules
- GaN IC integration, SiC Smart Cut wafers
- Electrical Characterization & Industrial Test (GaN, SiC, Si)
- **Converters :** for mobility, smart grids, datacenters : Increasing compactness and yield at competitive cost
- **Components :** Wide bandgap, passive HF, Packaging, Integration IC

Wide bandgap diodes & transistors, low loss HF transformers, integrated sensors for prognosis/diagnosis, packaging, IC and 3D integration, High power modules

Materials & Magnetic components : Wide bandgap substrates, HF ferrites, 3D ceramics

GaN & SiC Wide bandgap substrate at competitive cost, disruptive wide bandgap (Diamond, ferrites for HF conversion, additive manufacturing, 3D ceramics)

Assets

3 sites with high expertise in power electronics : Grenoble, Chambéry & Labège

Success stories

2 start-ups created

Digital Transition

 \bigcirc

POWER ELECTRONICS (CONVERTERS FOR NTE)

GaN micro inverter for PV

GaN System Diode SiC GaN System 650V 600V 100V

- Power : 400 W
- Switching frequency : 200 kHz
- Power density : 1,1 kW/liter
- Input : 25-60 V_{DC}
- Output : 230 V_{AC} / 50Hz
- GaN based

Full SiC 5kW PV inverter

- Power : 5 KW
- Switching frequency : 200 kHz
- Power density : 1,1 kW/liter
- Input : 400 V_{DC}
- Output : 400 V_{AC} triphasé
- Full SiC 1 MHz et 10 kW/l

PV inverter 80 kW

Industrial Realization of a 1,7 kV / 100A Full-SiC CSI Module

- Power : 80 kW
- max. PV voltage : 1000 V_{DC}
- AC voltage : 690 V_{RMS} 3~ /50 Hz
- CSI topology
- Custom power modules
- SiC based (power-module 1700 V switches)

SUCCESS STORY

EXAGAN

Accelerate mass-market adoption of gallium-nitride (GaN)-based power devices.

STMicroelectronics acquired Majority Stake in Gallium Nitride innovator Exagan.

http://www.exagan.com/en/

EXAGAN

Accelerate Power Transition life.augmented

SUCCESS STORY

WISE INTEGRATION

Ultimate Power Supply miniaturization using custom GaN IC Applications:

- Chargers
- In wall USB C charger
- E-mobility
- Data centers

https://www.wise-integration.com/

MATERIALS CIRCULAR ECONOMY

Strategic Materials recycling

2 Environmental impact reduction

3 Materials Saving & Sobriety thanks to Additive Manufacturing

cea

CIRCULAR ECONOMY OF MATERIALS

Our aim is to find the economic and environmental sustainability in the Energy transition

PLATFORM

STRATEGIC MATERIAL RECYCLING

Recycling processes & critical metals recovery

Photovoltaic panels Ag, Cu, Al

Permanent magnets Rare-Earth materials

> E-WASTE (PCB) Au, Pd

Li-ion Batteries Transitions metals, Li, Al

Fuel Cells PEMFC Catalysts (Pt, Co), Nafion

Nuclear Fuels Radioactive catalysts, Material Radionuclide

Development of hydrometallurgy processes

- Selective leaching
- Separation by continuous chromatography
- Recovery of particular interest items by selective precipitation
- Ionic liquids & molten salts
- Electrodissolution & Electrochemical reduction

STRATEGIC MATERIAL RECYCLING

Key features

Pilot project of batteries recycling process New batch process (5L) transferred to a partner

specialist in

- Recycling processes development within one sector and multi-sectors
- Secondary deposit exploitation (Rare Earth, Co, Li...)

Material composites recycling Support to our partner Extracthive for Long fibers C recycling by solvolysis

Hard magnet recycling (NdFeB)

Re-melting and strip casting with more than 25% of recycled magnet reaches equivalent performances than new magnets

STRATEGIC MATERIAL RECYCLING (BATTERIES)

Key Features

- Joint laboratory with an industrial partner
- 4 main steps : deactivation, valuable metal concentration, hydrometallurgy and materials valorization

Assets

- Innovative recycling route
- Full hydrometallurgy processes
- Recycling materials valorization (new battery materials)

STRATEGIC MATERIAL RECYCLING **(PV)**

Key Features

•

•

- Separation (wire slicing or supercritical fluid) •
- Slicing and material concentration
 - Si Kerf: 35 % of losses
- End-of-life modules recycling
 - Layer separation
 - Wired Miling Mechanical process
- Valorization & Treatment
 - Cost effective
 - Green •
 - Innovative •
 - Reuse of the liquid medium •

owards solar-grade

Other Applications

ENVIRON-MENTAL IMPACT REDUCTION

Key Features

DURABLE

đ. ÉCONOMIE

Eco-innovation activities

Assess

- ✓ Identification of issues approx. & eco of a domain
- ✓ Knowledge of technology issues and trends
- ✓ Quantified analysis of impacts, costs and sources
- ✓ Framed and standardized methods, quantified (eg: LCA, LCOE)

20 multiciteria assessment....

Improve

- ✓ Environmental and economic support for technical developments
- ✓ Eco-design and tech-eco optimization techniques

.....to eco-innovation

✓ Feedback on product, process and system design

Eco-Innovate

- Use the sustainability development and life cycle thinking as levers for innovation
- ✓ Collaborative and transversal work
- ✓ Allows redesign for breakthrough innovation, at controlled costs
- ✓ Integration of innovative solutions

ENVIRON-MENTAL IMPACT REDUCTION (REALIZATION)

Key Features

- Evaluation of the different engines of a bus fleet: 100% H₂, 100% battery, or Hybrid
- Significant reduction in energy consumption and GHG emissions from electrified battery and hydrogen solutions
- Increased investment in electrified solutions due to vehicle electrical storage and conversion components as well as charging and supply infrastructure
- Compensation possible by a reduced fuel cost in the TCO calculation, in particular if the taxation of fossil fuels is increased (taken at € 100 / ton in 2030)

SUSTAINABLE MATERIALS (MAGNETIC COMPONENTS)

Key Features

- Magnetic components development for electrical motor
- Sintered Permanent Magnets design
- Rare Earth reduction with new magnet compositions (Dy=-50%, Total Nd=-20%)
- Closed loop recycling with a Cradle to Cradle approach (up to 25% of used magnets incorporated)
- 3D design & fabrication for a higher compacity & power efficiency by thermal cooling by 3D printing or injection molding
- Magnet, Rotor, Stator Casing

Assets

Expertise in magnet design with a reduction of rare earth elements content

3D PRINTING (VALUE CHAIN COVERAGE)

Key Features

DESIGN

Simulation software's

CAD models

software's

Topological

optimization

Process control

MATERIALS

- Polymers (binder, wire, powder)
- Metallic alloys (powder)
- Magnetic materials
 Ceramics and composites
- Recycled materials

A strong presence all along the value chain, from prototyping to mass

Powder bed fusion

- Stereo lithography
- Binder Jetting
- Fused Deposition
- Molding

CONTROL

- Non Destructive Control
- Chemical and Physical Properties
- Health Security Environment
- 3D@manufacturing base: AI & database for design of flawless spare parts
- 360° vision on Additive Manufacturing technologies
- Strong partnerships with key OEMs on disruptive technologies
- Industrial Ecosystems Animation on 3D Printing Polymers & Metals

Success Stories

- Additive manufacturing processes qualification
- 3D Print Ecosystem for the energy sector

Multi Jet Fusion Polymers Stereo Lithography Polymers / Metals / Ceramic

Thermal treatment

Key Features

Heat Exchangers & Reactors

Assets

- Complex design implementation
- Disruptive design for improved performances
- Easier manufacturing process
- Less assembly operations
- Embedded sensors
- Lower costs
- Lower leadtimes

Thin channels and walls (Source: CEA Tech/LITEN)

Complex absorption exchanger reactor

3D Printed Methanation Reactor

Methanation reactor and complex internal structure

1st proof of concept designed and manufactured with FAMERGIE multi-lasers LBM machine

Complex channels design allowing better thermal control of the methanation reaction, improved heat exchanges, assembly operations reduction

TECHNOLOGY

3D PRINTING (EXAMPLE OF ACHIEVEMENT IN ENERGY)

CARBON CIRCULAR ECONOMY

(Photo)electrocatalysis

2 Biology/Biohybrides

3 Thermocatalysis / Thermoconversion

cea

consumption to 1 060 TWh

non-fossil carbon molecules

CARBON CIRCULAR ECONOMY

- Some sectors will not be able to decarbonize only through electrification, hydrogen (H₂), or energy efficiency. Carbon will still be used.
- Complementarily to biomass, CO₂ must be seen as a resource, a substitute to fossil energy, in order to make theses sectors sustainably decarbonised.
- To do so, low-carbon energies are combined with innovative CO₂ conversion technologies to produce fundamental molecules for energy and chemistry

(PHOTO) ELECTRO-CATALYSIS

Key Features

- CO₂ and water co-electrolysis for C1 or C2+ molecules production (methanol, syngas, acid)
- Alternative liquid media: ionic liquids, Deep Eutectic Solvents
- Artificial photosynthesis (solar fuels) : photo-electrocatalysis (TRL 1-4)
- H₂ production
- Towards carbon molecules through direct conversion
- Improve reaction efficiency (Materials and catalysts development)
- Using non-critical metals & materials
- From multi-scale modelization to prototype development

Assets

First bioinspired photoelectrocatalytic cells realized in France, with the collaboration of a Japan team, with a successful production of H_2 . The next step will be the CO_2

BIOLOGY BIOHYBRIDES APPROACHES

Key Features

- **Microorganisms biological strains expertise & engineering** (bacteria, cyanobacteria, microalgae) including metabolism, genetic engineering, lipidomics...
- Cultivation processes and conditions
- Pilot-scale (photobioreactor), GMO-compliant, modular and characterization platform
- Extraction and separation processes
- Application such as production of biofuels, biopolymers, terpenes, alkens

Asset

- Assess and engineer strains according to application criteria and process constraints with optimal production yield
- **Pilot-scale units for microalgae cultivation**, harvesting, pretreatment, extraction of biomass and conversion (from 1 to 100l/h)
- Development & Characterization Platforms

Crédits photo L. Godart

cea

SUCCESS STORY

TOWARDS 3RD GENERATION BIOFUEL WITH MICROALGAE

Long-term collaboration for the transformation of the CO₂ by microalgae into synthetic products of interest such as 3rd generation Biofuel from renewable energy sources

THERMO-CATALYSIS

Key features

Improved yield and compacity, thanks to reactorexchanger design, optimised for heat control

Assets

- Know-how in reactor design in relationship with reaction kinetic and heat-exchange, modelling, sizing
- Platform for methane, methanol, hydrocarbons, CO and CO_2 (WGS and RWGS) etc.
- Components, system and technology coupling approach
- Academic partnerships on catalytic reaction kinetics and thermodynamics

Success story

- Khimod: HIP millistructured reactor for Power2X
- **Jupiter1000**: Power-to-Gas, first french industrial demonstrator

THERMO-CONVERSION

Key features

- High carbon conversion rate and high energy integration of biomass conversion into energy carriers and building block molecules
- Process adaptation for variety of ressources
- Waste-treatement solution

Assets

- Platform for dry (torrefaction, pyrogasification) and wet (hydrothermal liquefaction and gasification) conversion
- High pression and high temperature process knowhow

Success stories

- Pulp&fuel: biofuel by hydrothermal gasification of black liquor, a pulp&paper waste
- **Gaya:** Expertise of gasification process, modelling and gas analysis

DE LA RECHERCHE À L'INDUSTRIE

DIGITAL TOOLS FOR ENERGY

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Batteries

operation

control

data

Digital tools for Energy systems integration

Networks : Sizing, management Energy (production, consumption, production storage) & real-time control prediction Cybersecurity for energy Remote assets networks and systems monitoring Industry Energy Optimization modelling, V2G **Buildings Energy** Management, V2H Acquisition & treatment Consumption Consumption of data treatment, Big **Digital Twin** prediction prediction (heating, ECS)

- Sensors and system integration
- Non destructive testing

- Asset management
- Complex system optimization
- Decision making
- Prediction

- Vulnerabilities identification
- Secure Industrial IOT
- Anomaly-based network intrusion detection & reaction
- End-to-end encryption
- Trusted ledgers for data and service

DIGITAL TOOLS FOR ENERGY

INSTRUMENTATION & CONTROL OF ASSETS

Sensors and system integration

2 Non destructive testing

INSTRUMENTATION & CONTROL OF ASSETS

Sensors and system integration

2 Non destructive testing

cea

Components

Inertial sensor

Acoustic sensor

Force sensor

Thermoelectric sensor

Pressure sensor

Magnetic sensor (TMR)

Gas sensor

Spintronics

110nm

Bio sensor

Ultrasonic sensor (MUT)

Technologies background

NEMS

SENSORS AT CEA

*

MULTI-SENSORS PLATFORM

MEMS size mechanical part

Nano-size piezoresistive gauge

- Multi-sensors / Multi-axis
- Very Efficient transduction (stress concentration)
- Ultra-Miniaturized sensors

200 & 300 mm Microsystems Clean Room

mirror

is the act

0

GAS SENSORS

- **Key Features**
- NEMS-based Multi-Gas Analyzer, based on Gas chromatography / mass spectrometry
 - Multi-gas
 - Resolution: few ppm to few 10's ppb
- Low-power NDIR CO₂ sensor
 - Low power consumption: < 1,5 mW @ 100% duty cycle
 - Small footprint (2x2x1 cm²)
 - Resolution: 10 ppm @1000 ppm concentration for CO₂ gas
 - Designed for CO₂ or CH₄
 - Reference channel

QCL Photo-Acoustic Spectroscopy

- Measurement of light absorption by the molecules of interests and the resulting acoustic waves
- Assembling a quantum cascade maser (QCL) source and a photonic integrated circuit (PIC)
- Low power consumption during operation (less than 10 W)
- Suitable for continuous monitoring
- Gas detected : methan, buthen, CO, CO₂, propan, ethylene...
- Smaller and cheaper than current QCL technology
- Up to 3 different gas detected at the same time
- Limit of detection down to 1 ppm at 10mW

Success Stories

Start-up eLichens

is the act

0

mirror

Start-up Mirsense – QCL sensors

hens

PLATFORN

PRINTED ELECTRONICS PLATFORM

Key Features

- A complete set of printing tools
- Gravure printing
- Screen printers (x3)
- flexogravure
- Slot die
- µspray
- Ink jet

On various substrate materials

Metal, Plastics, Glass, Fabric, Paper

Characterization and post-processing tools

- Automatic Inspection
- Ellipsometer
- Pick & Place
- Laser Ablation
- Laminating
- Thermoforming

SHM / sensors for Batteries

Wearable / Robotics

is the act

mirror

-

0

PRINTED PIEZO-ELECTRIC (FOR BATTERY SHM)

Key Features

- Printed piezo can be used for **Structural Health Monitoring**
- Ultrasonic emitter/recepter (MHz range)
- Determination of the State of Charge
- Detection of abnormal behaviour (over charge, under discharge, over heating)
- Prevention of safety issues ٠

Co-Integration of multiple functionnalitites possible

- Conductive lines,
- temperature,
- Strain/stress sensors on the same foil
- **Easier Integration**
- Piezopolymer thin and conformable compared to bulky and rigid piezoceramics
- Integration in plastic casing
- Integration directly on battery cell

0

mirror

AUTONOMOUS & LOW POWER SYSTEMS (USING ENERGY HARVESTING)

Key Features

- Development of autonomous IoT devices by using energy harvesting
- Whole energy harvesting system design for autonomous IoT devices
 - Mechanical energy (vibration, shock...), Air & Water flow, Heat Solar energy, MEMS systems, Microbial Fuel cells
- Ultra-Low Power electronics
- Optimizing the code and the microcontroller states to minimize its power consumption
- Wireless Power Transfer
 - Acoustic Power Transmission
 - Electrodynamic

Assets

- Whole system design & Advanced multiphysic systems
- Characterization equipment
- New components, new materials

Success stories

Energy harvesting from water flow

mirror

is the act

SYSTEMS FOR COMPLEX ENVIRONMENT

Key Features

- **High Temperatures**
 - Autonomous sensors for aeronautics

(180°C/20G) (energy harvesting, wireless power transfer)

High-G

- 3A @ 500'000G Dataloger
- Shock Energy Harvesting @ 20'000G (shocks)
- **Constrained Environments**
 - Integration of data acquisition systems
 - **Electronics & Mechatronics**

0

mirror

3A 500'000G Datalogger

Cattle monitoring (T°, Acc)

Drop time of nuclear reaction control rods (3A - 200G/800Hz)

SUCCESS STORY

MORPHOPIPE

Analysis of deformation using data fusion algorithm.

Composed of an accelerometer sensors network, flexible and connected, for deformation analysis of a riser.

INSTRUMENTATION & CONTROL OF ASSETS

Sensors and system integration

2 Non destructive testing

NON-DESTRUCTIVE TESTING

Key Features

- Numerical tools & simulation : Simulation, POD (Probability of detection), Imaging, data analysis & automatic diagnosis (AI for NDT), Optimization tools, Assisted NDT for operators (AR/VR)
- Instrumentation NDT : Flexible and adaptative sensors, embedded processing, real time imaging, Robotized NDT
- Technologies : Ultra-Sound, Eddy Current Testing, X-Ray, XR/CT, InfraRed Testing

Assets

- Improving detection systems, developing embedded instrumentation and innovative solutions
- Modelling abilities possible with a powerful tool (CIVA) used in more than 40 countries
- Data analysis & diagnosis

SUCCESS STORY

USING ULTRASOUND FOR OIL & GAZ MONITORING

- Evolving of current standard for the qualification of UT AUT inspection in the Oil & Gas industry
- Develop and promote simulation tools for qualification or validation of AUT inspection of welds according to evolving standards
- Collaboration with third parties DNVGL JIP to get recognition of AUT simulation
- Providing a CIVA AUT Oil & Gas module for AUT (Automatic UltraSonic Testing)

cea

SUCCESS STORY

AUTOMATIC DIAGNOSIS FOR WELDING MONITORING

- Automation of the diagnosis of ultrasonic welds of an offshore wind farm
- Automatic generation of inspection reports
- Increased productivity and reliability
- Manual analysis: several months
- Automatic analysis: one day

Ocean Breeze

cea

SUCCESS STORY

PIPE THICKNESS MAPPING IN THE ENERGY SECTOR

- Continuous monitoring of metal piping to detect and monitor corrosion
- Passive system based on the exploitation of ambient noise and ultrasonic guided waves
- Measurements obtained using two receiver rings
- Reconstruction of the thickness map (Passive Tomography)

TechnipFMC

Electrolysis-induced corrosion

Passive reconstruction

Thickness (mm) **Cross section** - 2.10 2.1 2.05 Ê 2.0 - 2.00 Thickness 1.9 - 1.95 1.8 - 1.90 reconstructio 1.7 reference - 1.85 0.1 0.2 0.3 0.4 0.0 Distance (m) - 1.80

NON-DESTRUCTIVE ELECTRICAL MAINTENANCE (REFLECTOMETRY & TRANSFEROMETRY)

Key Feature

- A specific test signal is injected down the cable:
 - Reflectometry: reflected echoes at each fault are recordered for data analysis
- Transferometry: transmitted signals are recordered for data analysis.
- **Applications:** electrical cable diagnosis, cable/fault characterisation, ageing monitoring, network topology reconstruction, environment health monitoring, structures health monitoring, hardware integration

Asset

- Embedded diagnosis (i.e. electronic board, chip, etc.).
- Cable monitoring in real time with respect to EMC constraints.
- Detection even in hard-to-access areas
- Numerical tools & simulation to evaluate the performance of the reflectometry in different configurations (based on simulation/experimentation).
- **Reflectometry** : Enables fault detection and location even when the system is off
- **Transferometry** : Permits to overcome the signal attenuation in long cables and to monitor the cable aging

Success stories

Electrical wiring systems troubleshooting, testing & monitoring

TechnipFMC

Signal processing and IA-based

HEALTH MONITORING (THROUGH OPTICAL FIBER SENSORS)

Key Features

- Development of Optical Fibers sensors and laser processes allowing multiple, distributed sensing along a single fiber, over small or large distances, even in harsh environments (high T°, cryogenic, high Pressure, radiation, submarine...)
- Non-destructive testing through Optical Fiber Multiplexed Bragg gratings
- Example of applications :
- Pipe monitoring, pressure measurement without tapping for existing or new Oil & Gas installations, in liquid or gas ; erosion measurement in submarine parts
- Fiber optic embedded in composite materials for life monitoring of Hydrogen tank

Assets

- Sensors are engraved along the fiber through the protective sheath using a cutting edge CEA laser process, ensuring both high mechanical and thermal resistance
- Wide range of techniques available allowing for instance discrimination of temperature & strain

Temperature 4K – 1400K

Wavelength multiplexed Bragg gratings

DATA, AI & DIGITAL TWIN

1 For asset management

- **2** For Complex system optimization
- **3** For Decision making

4 For Prediction

AI AT CEA

An offer that covers the whole spectrum, from algorithm to its integration. Indeed, CEA own deep learning tools, and is also expert in:

- Hardware design
- Advanced Implementation
 - RRAM synapses
 - 3D stacking
 - Mixed A/D design
 - FDSOI 28nm
- Deep learning Research

DATA, AI & DIGITAL TWIN

1 For asset management

<u>2</u> For Complex system optimization

<u>3</u> For Decision making

4 For Prediction

SUCCESS STORY

COMPUTER VISION

Mastering the entire value chain of machine vision

- Proprietary solutions
- 70 Scientists to tailor solutions meeting industry challenges
- Smart data annotation
- For waste management: item segmentation and classification
- Default inspection on power electric

Partenariat confidentiel

cea

SUCCESS STORY

NETWORK PIPELINES INSTRUMENTED FOR LEAK DETECTION

Implementation of a real-time monitoring and alerting tool for smart network management

Approach implemented :

- Signal processing for data cleaning
- Statistical modelling and machine learning for the detection of anomalies
- Confrontation with contextual data

DATA, AI & DIGITAL TWIN

For asset management

- **<u>2</u>** For Complex system optimization
- **<u>3</u>** For Decision making

4 For Prediction

DIGITAL TWIN (FOR ENERGY GRIDS)

Key Features

- Simulate & optimize complex systems
- System verification assessments
- Monitoring (supervision at real time)
- Safety and security analyses
- Grid System architecture modeling
- Interface with equipement models & simulator
- Global Simulation orchestration

Assets

- Open and flexible modelling platform
- Can be easily customized to fit in specific application Highly modular tool architecture

Cosimulate the heterogeneous models

DATA, AI & DIGITAL TWIN

For asset management

2 For Complex system optimization

<u>3</u> For Decision making

4 For Prediction

EXPERT SYSTEM (EXPRESSIF®)

Key features

- Expert system for Knowledge modelling
- Automated reasoning for decision making
- Application : Increasing the chance of relevant excavation for underground gas network pipe maintenance
 - In situ measurment of network data
 - Risk assessment
 - Development of the 300 rules
 - Optimizing rules
 - Development of an Human-Computer interaction system
 - Reasoned evaluation of Risk assemment
 - Rules modifications

Asset

- Less data needed than for machine learning (digital frugality)
- Explanability of decision
- 5 –fold increase of real positive

Success story TEREGO

Knowledge Modelling

Automated Reasonning

Decision Making

0

DATA, AI & DIGITAL TWIN

For asset management

<u>2</u> For Complex system optimization

<u>3</u> For Decision making

4 For Prediction

SUCCESS STORY

E-FLUID : IMPROVE THE PREDICTION SOFTWARE

Integration of human rhythms (public holidays, school vacations) and weather conditions for forecasting electricity consumption:

 Improved performances for 92% of customers

uem

• Forecast improvement by 15% on average with a significant financial impact on the managed population

CYBERSECURITY

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

cea

A research driven by a strong understanding of critical infrastructures cybersecurity

A technological and a scientific expertise known internationally for more than 20 years

A central place as a recognized trust actor within French Ecosystem, with strong links with local authorities

Management of strategic programs in France and in Europe

Critical function and data security enhancement

A proven methodology pour master complexity and interdisciplinarity

CYBERSECURITY METHODS & PLATFORMS

State-of-the-art technological platforms

200 & 300 mm microsystems

Critical system design

Smartgrid

Cybersecurity

Chip design

HARDWARE VULNERABILITIES IDENTIFICATION

Key Features

- Conformity analysis of critical hardware
- Penetration test with beyond state-of-the-art attack Benches : invasive, fault injection, side-channels, software
- Characterisation tool to validate embedded systems security

Integrated circuits and hardware components Common Criteria up to EAL7

SOFTWARE VULNERABILITIES IDENTIFICATION

Key Features

- Next generation code-auditing tools
- Automated analysis platforms based on advanced reasoning, providing mathematics-based security proofs
- Deep code verifications based on advanced reasoning embed strong mathematical assurances within software development lifecycles
- Frama-C is used across CEA, and in software production processes across numerous industrial domains (transportation, energy, telecoms, industry, defense, ...)

Software Analyzers

PLATFORM WONDERICS SECURE INDUSTRIAL IOT (IIOT)

PLATFORM

- Simulation & demonstration platform of an Industrial Control System
- Demonstration of attacks
- Testing efficiency of countermeasures at device level

SIGMO-IDS ANOMALY-BASED NETWORK INTRUSION DETECTION & REACTION

- Cognitive System for Network Intrusion Detection & Reaction (IDS) tailored to industrial applications
 - Neural-network –based "protocol-aware" intrusion detection at each probe
 - Orchestration of the overall (multi-probe) detection function, always fitted to the current context
 - DN-based control of the IDS probes
 - Dynamic reconfiguration of the network to counter the detected threats
- Implementations targeting multiple applications
 - Wireless IoT: 6LoWPAN, Zigbee, Thread, LoRA, BLE
 - Smart Grid: IEC 60870
 - Industry 4.0: OPC-UA

ARGOS RETHINK AND SIMPLIFY SECURE INDUSTRIAL IOT (IIOT) DEPLOYMENT

- a 3-in-1 solution to improve manageability, sustainability and ergonomics
 - A secure proxy for securing existing industrial networks initially based on insecure communication protocols, limiting attacks through service denial & detecting attacks in real time
 - A **supervision solution** with secured end to end communication protocol, a simplified deployment of a configuration in an IIOT network via a mobile phone.
 - **"Hardware in the loop**" architecture integrating simulation of industrial processes and specific attacks.

CINGULATA TOOLCHAIN, ENABLING END-TO-END ENCRYPTION

- Help software developers integrate homomorphic encryption techniques in their apps. Optimize the performance of these operations
- The world's leading compilation toolchain is developed at CEA, allowing engineers to optimize and deploy homomorphic cryptography in real-world applications
- CEA Teams have breached sub-second trans-cyphering capabilities, an essential step for homomorphic deployments to interoperate with legacy environments

TRUSTED LEDGERS FOR DATA AND SERVICE INTEGRITY

- Distributed cryptographic protocol enable tamper-proof and undeniable registration of transactions
- Gaining trust in secure distributed protocols
- Design new protocols
- Prototyping trusted service

cea

KEY PARTNERSHIPS

Crédit photos : ©Enel, ©Thales Alenia Space, ©Grt Gaz, ©Exagan, ©Wise Integration, ©TechnipEnergies ; CEA : ©Dominique Guillaudin, ©Patrick AVAVIAN, ©Henry, ©L. Godart, ©Pierre Jayet; Fotolia : ©Daniele Pietrobelli ; ©John Smith ; ©denisismagilov, ©Jackin, ©malp, ©James, ©Benoît Grasser, ©Mimi Potter, ©mikkolem ; AdobeStock ; ©iaremenko, ©WrightStudio, ©ra2studio, ©popov48, ©Romolo Tavani, ©xiaoliangge, ©pickup, ©botulinum21, ©Dmitry: Freepik : ©evening_tao, © monsitj

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr