

The international constellation of high-precision altimeter satellites

Global coverage

Updated in past 5 years (143) Has some data (101) No data (50)

Global mean sea level rise measured from space (1993-2025)

Regional trend patterns (1993-2024)

Different observing systems are available for estimating the causes of sea level rise...

Ice mass loss from the Antarctica and Greenlaand ice sheets based on different space techniques

Global mean sea level budget (2005-2019)

CONTRIBUTIONS to the global mean sea level rise (since 2005)

≻Ocean thermal expansion:

~40%

➤ Total land ice melt
(glaciers+Greenland
+Antarctica) + land waters
~60%

Global mean sea level budget (2005-2022)

CONTRIBUTIONS to the global mean sea level rise (since 2005)

> >Ocean thermal expansion:

> > ~40%

≻Total land ice melt (glaciers+Greenland +Antarctica) + land waters ~60%

Regional sea level trend budget (2004-2022)

Inspire How to monitor the Ocean?

Coastal altimetry

New network of 1600+ virtual coastal stations based on data reprocessing of classical altimetry missions (Jason-1, 2, 3) in the world coastal zones

- Virtual coastal stations located at less than 3 km from the coast (green dots)
- Complement the limited tide gauge network (red & blue squares)

- Tide gauges Virtual station at < 3 km
- Tide gauges + GNSS < 10km

SWOT mission « Surface Waters-Ocean Topography » Launched in 2022

A Game Changer!

Space Observations for Monitoring Coastal Zone Hazards

Storm surges, hurricanes, extreme waves, Coatal currents, river floods, Coastal engineering, urbanization, Climate-related sea level rise Ground subsidence...

- > Shoreline erosion and retreat
- > Temporary and permanent flooding
- > Changes in sediment stores and seafloor topography
- Changes in estuaries morphology
- > Changes in coastal ecosystems
- > Salinization of coastal aquifers

2 examples....

InSAR on Sentinel 1 for measuring ground subsidence

High-resolution satellite imagery for measuring shoreline retreat

To conclude

- 1. Measuring sea level rise with altimetry techniques along the world coastlines and understanding local and remote drivers remain priority goals
- 2. Measuring ground subsidence (InSAR), especially at all coastal megacities, and combining with climate-related sea level rise is another major objective
- 3. It is also time to systematically monitor from space indicators of sea level rise impacts at the coast, e.g., shoreline retreat, changes in coastal bathymetry, etc...

→ MITIGATION & ADAPTATION

