

15:00-16 :00 Ocean models : the numerical ocean in four dimensions

16:00-17:00 EDITO model lab : What-If scenario training workshop

17:00-18:00 MER-EP kick off event

Join at slido.com #1784 7616

Questions & Answers

PAVILION IMPLEMENTED BY

European Pavilion DIGILICA DIG

How to monitor and forecast the ocean with models? 5th June 2025

monitor the Ocean? 0 0 How to

Dr Andy Saulter

Met Office, United Kingdom

Why monitor and forecast the ocean?

People have always needed to understand the sea: whether to know the sea's moods for safe transit, the movement of the tides or how to find food

In our modern world these needs stand and we must also ask other questions

- How can we use the ocean sustainably?
- How do we prevent and mitigate pollution?
- What does climate change mean for the ocean's behaviours and our own wellbeing?

Monitoring and forecasting give us evidence based tools to help answer these questions

ir own wellbeing? w<mark>er these</mark>

Ocean? nitor

Why model? Extending our ocean knowledge in space and time

Observations of the ocean are an incredibly valuable resource – but literally 'only scratch the surface' of the ocean knowledge we need

Models allow us to distribute this information in space

Models allow us to estimate future states

Modelling presents an opportunity to create homogenous information with which we can interact to explore how our behaviours influence the ocean's response and vice versa (e.g. through Digital Twins)

Why model? Extending our ocean knowledge in space and time

Observations of the ocean are an incredibly valuable resource – but literally 'only scratch the surface' of the ocean knowledge we need

Models allow us to distribute this information in space

Models allow us to estimate future states

Modelling presents an opportunity to create homogenous information with which we can interact to explore how our behaviours influence the ocean's response and vice versa (e.g. through Digital Twins)

Why model? Extending our ocean knowledge in space and time

Observations of the ocean are an incredibly valuable resource – but literally 'only scratch the surface' of the ocean knowledge we need

Models allow us to distribute this information in space

Models allow us to estimate future states

Modelling presents an opportunity to create homogenous information with which we can interact to explore how our behaviours influence the ocean's response and vice versa (e.g. through Digital Twins)

Ocean? nitor

How do we do this? Process models basic concepts

- Divide the ocean into blocks
- Each block behaves according to a set of 'process rules'
- Each block's behaviour is constrained by forcing inputs, observations
- Each block 'talks' to surrounding blocks, enabling conditions in one part of the model to translate and affect other blocks

How do we do this? Building complexity

Increasing complexity of the basic model is crucial to delivering information that can be trusted and is anchored to the real world

Constraining our models using observations (analysis) to simulate the present ocean state

Achieving the right resolutions to represent most important ocean processes

Coupling models together to simulate two-way exchanges between components of the ocean environment and the wider earth system (e.g. atmosphere)

Developing methods to generate useful uncertainty information (error bars) for our analyses and forecasts

Compute resource is finite – so we must optimise our use of compute resource

Our challenges, now and in future

- Sustaining and improving the mix of observations and models
- Communicating
 uncertainties in useful ways
- Extending what we can
 skillfully provide and interoperability of data to fit new societal demands
- Working with new technologies and tools (e.g. AI) to improve knowledge and services whilst retaining trust

Joining our journey

- Users that can help us
 understand priorities for development
- Communicators that help
 turn data into policy and
 decisions evidence
- Software engineers that keep our systems relevant under rapid technological change
- Scientists with a passion for the ocean, people and problem solving

Merci d'avoir écouté

Inspire

How to monitor the Ocean?

"But where, after all, would be the poetry of the sea were there no wild waves?" — Joshua Slocum, Sailing Alone Around the World

Thank you for listening Merci d'avoir écouté

European Pavilion Nice | France 2 - 13 JUNE 2025

The (Copernicus) and forecasting services

Thursday 5th June

European monitoring

monitor the Ocean? **S**D How to

Dr Marina Tonani

Mercator Ocean International

PROGRAMME OF THE EUROPEAN UNION

Earth observation program

Funded by the EU commission and implemented by

REGULAR SYSTEMATIC FREE information on the state of ocean

https://marine.copernicus.eu

https://www.copernicus.eu/

monitor the Ocean? How to

Chlorophyll

lce

WHITE OCEAN Sea Ice

Arctic Ocean: a surface warming occurring at twice the global average

Sea Ice thickness from Ice Reanalysis

Baltic Sea: semi –enclosed brackish water

Black Sea the largest euxinic basin in the world

"The Black Sea is entirely anoxic, except for a thin (~ 100 m) ventilated surface layer. Since 1955, the oxygen content of this upper layer has decreased by 44 %. " Capet et al. 2020

Mediterranean Sea hotspot for climate change

Deep Marine Heatwaves

A marine heatwave in the Mediterranean Sea reached up to 1,500 m below the surface. While heatwaves were more frequent at the surface, temperatures rose further and for longer beyond 150 m.

Copernicus Marine Ocean State Report

700m

Heatwave reached 1500m depth!

1500m

North West-European Shelf strong storms

Éowyn strongest storm in 10 years, says **Met Office**

→ <u>CUAG</u>: 3 meetings a year (2 workshops + 1 meeting at General Assembly)

→ National Stakeholder Marine Forum

Annual survey: sent to all users of the past year

→ Systematic Survey: after each event (trainings and workshop)

→ Dedicated interface with major accounts (e.g. Regional conventions)

→ Collection of feedback through user support

→ Interface with other Copernicus Entrusted Entities (C3S, EUSPA)

monitor the Ocean? How to

EU Digital Twin Ocean will improve the Copernicus Marine offer

Increasing flexibility of the offer

The EU DTO is revolutionizing science by bringing together previously separate research fields.

- Responding more quickly to user and policy needs
- Facilitating the coastal extension of the service

European Pavilion DIGILGICA DIGILGIC

How do we use artificial intelligence (models) to improve ocean monitoring and forecasting? Thursday 5th June

Yann Drillet

Mercator Ocean International

Artificial Intelligence ocean models for new services

monitor the Ocean? How to

Physical and Artificial Intelligence models

monitor the Ocean? How to I

Evaluation of an AI models

PHYSICAL MODEL FORECAST

RMSE(°C)							
GLO12	0.588	0.622	0.647	0.679	0.723		
GLONET	0.637	0.733	0.753	0.875	0.920		
WENHAI	0.549	0.719	0.912	1.095	1.270		
XIHE	0.575	0.654	0.660	0.674	0.782		
uo [15m]							

RMSE (m/s)								
GLO12	0.167	0.173	0.179	0.184	0.189			
GLONET	0.142	0.148	0.148	0.152	0.157			
WENHAI	0.163	0.165	0.166	0.171	0.175			
XIHE	0.159	0.158	0.158	0.157	0.159			
1		3	5	7	10			

Better										Worse
20000	-0.8	-0.6	-0.4	-0.2	0.0	0.2	0.4	0.6	0.8	Worbe

Common framework Open source **Evaluation protocol** Intercomparison

OceanBench

Temperature [0-5m]

Lead time [days]

Quentin Febvre

Ifremer

Extreme wind events: tropical cyclones

Hurricane Milton (2024)

Inspire How to monitor the Ocean?

Ever improving observations: The "torn pages"

MICHAEL 2018/10/08 10:00 UTC

Advances in numerical modeling: The "Perfect Storm" in a Computer

nonitor the Ocean?

How to

DTO and AI - Weaving the Narrative Together

Impacts

Before Hurricane Veronica (2019)

After Hurricane Veronica (2019)

How to monitor the Ocean? Ō

CNRS

Raphaëlle Sauzède
Nutrients: The Ocean's Invisible Fuel

fall winter %.... injection of nutrients by vertical mixing

Mignot et al., 2014

How to monitor the Ocean?

Al to predict nutrients where no observations are available

Nutrients

nonitor the Ocean? How to

From Sparse Observations to a Global Ocean View

✓ ~30,000 new profiles each year

Over 330,000 profiles of temperature, salinity & oxygen

840 active floats measuring oxygen across the global ocean

Al profiloats

Years

Al predicts dnutrients for all these

Inspire

How to monitor the Ocean?

Thank you!

ACCIBERG : Iceberg forecasts demo 5 June 2025

Laurent **BERTINO**

The Nansen Center, Bergen, Norway

NERSC NANSEN ENVIRONMENTAL AND REMOTE SENSING CENTER THE NANSEN CENTER + BERGEN + NORWAY

Ocean? D D monitor th Ц Ц How

Join at slido.com #1784 7616

Questions & Answers

PAVILION IMPLEMENTED BY

EDITO-Model Lab: What-if Scenarios Training Workshop 5 June 2025

Francisco Campuzano +ATLANTIC CoLAB

European Digital Twin Ocean

Introduction to DEDITOModelLab

European Digital Twin Ocean

Yann Drillet Mercator Ocean International

The European platform for discovering, visualizing, and leveraging products and knowledge to power digital twins of the ocean

EDITO

European Digital Twin of the Ocean

EDITO **AUN** Ocean **Decade** Action

Digital Twins of the Ocean

EDITO

European Digital Twin Ocean

2021 United Nations Decade of Ocean Science for Sustainable Development

EDITO-Model Lab Consortium European ocean numerical modelling expertise

13 partners 8 countries

- Numerical modelling
- Supercomputing
- Artificial intelligence
- Software development
- Operational oceanography
- Design with and for users
- Science communication

EDITO-Model Lab

Components on demonstration during the UNOC 2025

What-if Scenarios 5 June 2025 End Users Workshop

13 June 2025

Services

On demand processing

Focus Applications Intermediate Users Hackathon

EDITO-Model Lab What-If Scenarios Demonstrating capabilities

Joanna Staneva Hereon

Key Concepts

-What?

-For whom?

Contribution to the UN Sustainable Development Goals

How can they help?

Tackling societal challenges

Science-based

Easy access

Users co-design

Stakeholders explore risks and solutions

Smarter Informed More sustainable Decisions

Aquaculture for zero carbon

What if we reconstruct seagrass for protecting the coast?

What if we could capture plastics before they reach our seas?

What if we upscale aquaculture in offshore windparks?

Applications in the EDITO Platform

Tutorials & Documentation

•

European Digital Twin Ocean

Nature-Based Solutions for Biodiversity & Coastal Hazards

Wei Chen Hereon

A big problem

Flooding

Coastal vegetation, a great solution

Impact of vegetation

Enhanced Need for Effective Coastal Protection

- Reduces waves and currents
- Stabilises beaches naturally
- Weakens coastal erosion and flooding
- ▶ Protects the environment

Regional Applications

"Seagrass can efficiently reduce coastal erosion could help tidal flats keep up with sea level rise, directly contributing to flood risk reduction."

"Seagrass expansion could be a useful addition to engineered coastal protection measures."

Video: MER Marine & Environmental Research Lab Ltd. (2021, August 16). Transplantation of seagrass (Posidonia oceanica)

Marine Plastic for Zero Pollution

Jens Murawski Danish Meteorological Institute

Marine Plastic for **Zero Pollution**

- Humans, plastic and the sea...
- +9ktons of particles from car
- +30 tons of microplastics from

Up to 45 tons

of plastic fiber from laundry washing enter the Baltic Sea every year

What happens to microplastic pollution in the sea if river pollution is reduced?

For a given marine protected area, where are microplastics coming from?

Marine Plastic for Zero Pollution

EDITOModelLab

European Digital Twin Ocean

Estimates how removing microplastics, such as car tyre wear, from rivers affects marine pollution in the Baltic Sea

Marine Plastic for Zero Pollution

	υ.		
✓ ➡ EDITO-Model Lab — Eur X ➡ Datalab EDITO X ▲ M	croplastic Analysis Do 🗙 +		2 B)
← → ♂ to user-jmu-530785-0.lab.dive.edito.eu			😭 🔞 Vecily it's you 🛛 Relaunch to update
River Contributions Select rivers and their weights:			1
Use weight sliders to scale the contribution of each river source. Values greater than 1.0 increase the river's impact, values less than 1.0 decrease it.		Dis	
Enable All Disable All Weight			
e. 96 2. 96			
🗇 Daugava (Latvia)			
Kemijoki (Finland)	B	altic Sea Microplasti	CS
🗌 Narva (Estonia/Russia)	Select an application to analyze different aspects of microplastic distribution in the Baltic Sea.		
🗍 Indalsälven (Sweden)	• WiS 2 (1.0): Transport Analysis 🖘	• FA 3 (1.1): Seasonal Spatial	FA 3 (1.2): Time Series Analysis
Ume (Sweden)	Transport patterns across different rivers and tracers.	Distribution	Temporal patterns through depth profiles.
C Torne (Finland/Sweden)		Spatial distribution across different months and depths.	
🗍 Gavleån (Sweden)			
Oder (Poland/Germany)	Launch Transport Analysis	Launch Seasonal Analysis	Launch Time Series

Marine Plastic for Zero Pollution

European Digital Twin Ocean

Aquaculture for Zero Carbon

Lőrinc Mészáros Deltares

- Many offshore wind parks are built
- The space within these parks could be multi-use
- Which can be used for shellfish aquaculture
- ► This provides for food

Can it also store carbon? Does it make any difference?

			U .		
EDITO Datalab		Home	Trainings and tutorials	Datalab	Explore data
Reduce					
	Welcome Felix to the Da	talab			
(8) My account	More information about the platform is a	vailable i	n the		4
Project settings	Trainings and tutorials section.				
Service catalog	Trainings and tutorials				
My Services					Contraction of the second
					>
					100
My processes					
My Secrets					
📇 My Files					
Data Explorer					
	Run your application as a serv	vice			L
			alvze data	Exe	ecute and configure
	interactively, benefit from a growing catalog of services, create yo	ir community. An our own tools, W	hat-If applications	trar	nsionnauon, pre/pc
	I une and deploy your application to provide it as a service to you interactively, benefit from a growing catalog of services, create you and focus applications. Work with the languages and environment resources you need.	ir community. An our own tools, W its you prefer and	hat-If applications d reserve the	trar cor dat	ntrols. Configure ru ta storage of your c
	Tune and deploy your application to provide it as a service to you interactively, benefit from a growing catalog of services, create yo and focus applications. Work with the languages and environmen resources you need.	Ir community. An our own tools, W tts you prefer and (hat-If applications d reserve the he service catalog	trar cor dat	ntrols. Configure ru ta storage of your c
	Tune and deploy your application to provide it as a service to you interactively, benefit from a growing catalog of services, create yo and focus applications. Work with the languages and environmen resources you need.	Ir community. An our own tools, W nts you prefer and III Browse to	hat-If applications d reserve the	trar cor dat	ntrols. Configure ru ta storage of your c

Disclaimer: The scenario simulations are currently in progress. The dashboard presently displays mock-up data.

"A very useful tool for discussions, including within the North Sea Agreement working group on multi-use and area passports."

Stichting De Noordzee – Dutch NGO

"There will soon be a round table in the Dutch Parliament on wind farms. A dashboard like this would definitely be an asset for us." Stichting De Noordzee – Dutch NGO

Aquaculture for Zero Carbon

Inspire

How to monitor the Ocean?

Questions & Answers

European Digital Twin Ocean

Join at slido.com #3608 718

Copernicus Marine Service

What can you do with the EDITO-Model Lab What-if Scenarios?

5 June 2025

Marine Environment Reanalyses Evaluation Project Kick off event

European Pavilion DICIE ICA DICIE DICIE ICA DI

MER-EP

nonitor the Ocean? **d**Sl , to How

Use Physical Ocean Reanalyses to Monitor Ocean Changes 5th June, 2025

monitor the Ocean? **S**D How to

Chunxue Yang

Institute of Marine Sciences, National Research Council of Italy (CNR-ISMAR), Roma, Italy

Extreme Ocean Warming

- In 2023, the marine heat wave last Over a month in Alboran Sea - +5.5 °C increase of sea surface temperature along the coastlines of Italy, Greece, and North Africa

https://marine.copernicus.eu/news/2023-northern-hemisphere-summer-record-breaking-oceanic-events

nonitor the Ocean?

Extreme Ocean Warming

Global ocean heat content (OHC) change (IAP/CAS)

Cheng et al., 2025

Observations

https://www.esa.int/ESA_Multimedia/Images/2019/05/ESA-developed_Earth_observation_missions

Observations

https://gcos.wmo.int/site/global-climate-observing-system-gcos/networks/oopc-situ

ne Ocean? nonitor th ц О N0⊢

Observations

How to

*A cast is a set of measurements for a single variable such as temperature or salinity at different depths; †BT, bathythermograph; ‡CTD, high-resolution sensor of conductivity, temperature and depth.

Bates et al., 2018

Ocean Reanalyses

Inspire How to monitor the Ocean?

Quality of ocean reanalyses

- Uncertainty
- Accuracy
- Reliability
- Fitness for the purpose of usage of ocean reanalyses

Use reanalyses to monitor ocean changes

https://rapid.ac.uk/methodology

Observation record goes back to 2004

nonitor the Ocean? Ĕ **VOH**

Inspire

How to monitor the Ocean?

Thank You!

Sea ice reanalyses 5 June 2025

How to monitor the Ocean? Φ ldsu

Laurent **BERTINO**

The Nansen Center, Bergen, Norway

NERSC NANSEN ENVIRONMENTAL AND REMOTE SENSING CENTER THE NANSEN CENTER + BERGEN + NORWAY

Context

https://data.marine.copernicus.eu/-/38xndl2c6k

For scale...

How to monitor the Ocean?

How to monitor the Ocean?

How do we know? Satellites

1987 1992 2002 2010 1978

Sea ice area concentrations

AMSR-E

esa

CIMR

nonitor

a) Mean seasonal cycle for 1993-2014, 2012 and 2023

b) Interannual annual anomalies of Northern Hemisphere sea ice extent expressed in millions of km2. Time series are based on the multi-model ensemble mean of global reanalysis, e.g. the GREP data product GLOBAL MULTIYEAR PHY ENS 001 031. Ensemble mean together with its spread (light shaded) are given. Details on the GREP product are given in the corresponding PUM for this OMI. The change of sea ice extent over the period 1993-2023 is expressed as trend in millions of square meters per decade, and in % per decade and linear trend is superimposed (dot-dashed line).

https://marine.copernicus.eu/access-data/ocean-monitoring-indicators

Satellites

1987 1992 1978 2002 2010

Sea ice concentrations

Sea ice drift

Sea ice Thickness

ENVISAT

SSMI

SMMR

Sea ice Thickness

SMOS

CrvoSAT-2

CIMR

How to monitor the Ocean?

ess [m]

Sea ice thickness [m]

neXtSIM

2

Sea ice thickness [m]

2

00:00 UTC

Enhance resolution

Go back in time

Make forecasts cheaper

Independent

Sea ice thickness distribution

Inspire

How to monitor the Ocean?

Thank you for your attention!

PAVILION IMPLEMENTED BY

Copernicus Marine Service

European Pavilion Nice | France 2 - 13 JUNE 2025

Marine Environment **Reanalyses:** Biogeochemistry

June 5th 2025

Marilaure Grégoire, Gianpiero Cossarini, Elodie Gutknecht, Susan Kay, Julien Lamouroux, Helen Morrison, Coralie Perruche, Annette Samuelsen, Lena Spruch, Anna Teruzzi, Luc Vandenbulcke, Tsuyoshi Wakamatsu

monitor the Ocean? How to

Marilaure Grégoire

Marilaure Grégoire, Gianpiero Cossarini, Elodie Gutknecht, Susan Kay, Julien Lamouroux, Helen Morrison, Coralie Perruche, Annette Samuelsen, Lena Spruch, Anna Teruzzi, Luc Vandenbulcke, Tsuyoshi Wakamatsu

University of Liège, Belgium
Marine Environment Reanalyses : Biogeochemistry

- Observing the green ocean
- Modelling the green ocean
- Reanalysis products and connexion with the biology

- Higher resolution in space, time, spectral
- Hyperspectral data offer a better connection to biology

Credit: Nasa

National Aeronautics and Space Administration

NUMERICAL OCEAN

- Mass balance equations \bullet
- No equivalent to Navier-Stokes equations for biogeochemistry
- Empirical representation of biogeochemical processes based on laboratory experiments.

$$\frac{\partial y}{\partial t} + \underbrace{\nabla_{H}.(\underline{u}\,y)}_{horizontal and vertical advection} + \underbrace{\frac{\partial}{\partial x_{3}}(wy)}_{sedimentation} + \underbrace{\frac{\partial}{\partial x_{3}}(w_{y}^{s}y)}_{production/de} = \underbrace{Q^{y}}_{production/de}$$

 $+\frac{\partial}{\partial x_3}\left(\widetilde{\lambda}\frac{\partial y}{\partial x_3}\right)+\lambda_H\nabla_H^2 y$ estruction horizontal and vertical diffusion

BIOGEOCHEMICAL MODELLING

BIOGEOCHEMICAL MODELLING

BIOGEOCHEMICAL MODELLING

MODEL INTEGRATION

- Initial State
- Evolution equations
- Boundary conditions
- Data Assimilation

OCEAN -INTERFACES

FORECASTING –REANALYSIS

7 regions

Plankton Functional Types models

1. Global

2. Arctic

3. Baltic

4. NWS

5. IBI

6. Med Sea

7. Black Sea

Simulations

REANALYSES ~25 years

FORECAST 5 to 10 days

Environmental variables

Distributed products :

- Nutrients (NO3, PO4),
- Oxygen

- Plankton: Chla, Phyto in carbon (total and functional groups), Primary Production
- biomass of Zoo in carbon
- Carbonate: pH, DIC, spCO2, fCO2
- **Optics (Kd)**

Preliminary results:

- Efficient control of CHL and nutrients \checkmark
- Significant improvements in carbonate chemistry variables \checkmark
- Encouraging results on air-to-sea CO2 flux estimation

Marine productivity and contribution of the biological (POC) and carbonate (PIC) pumps to the sink of organic pumps to the sink of organic carbon into the Mediterranean 18 38 interior interior

BPc

ARCTIC OCEAN CHLOROPHYLL

BIORAN System:

HYCOM-FABM-ECOSMOFixed lag EnKS (smoother)BGC State-Parameter joint estimationGaussian Anamorphosis in Chl-a observation

Assimilated Data:

Satellite Chl-a (ESA OC CCI 8 daily) In-situ nutrients (Nitrate,Silicate,Phosphate) Source: GLODAPv2, ICES, NMDC, Clivar

Marilaure Grégoire Gianpiero Cossarini

Susan Kay

Lena Spruch

Anna Teruzzi

Julien Lamouroux

Helen Morrison

Tsuyoshi Wakamatsu

Inspire How to monitor the Ocean?

Join at slido.com #1784 7616

Questions & Answers

PAVILION IMPLEMENTED BY

Inspire

How to monitor the Ocean?

THANK YOU

Copernicus Marine Service

