

General Assembly

16-18 January 2024 – Lecce, Italy

CMCC Headquarter in Lecce, via Marco Biagi 5

Cliquez ici pour rejoindre la réunion

Introduction

Opening Words: L Panzera (CMCC), G Coppini (CMCC), Z Konstantinou (EC, DG MARE), N Segebarth (EC, DG RTD)

Introduction

Opening Words:

L Panzera (CMCC) G Coppini (CMCC)

Z Konstantinou (EC, DG MARE) N Segebarth (EC, DG RTD)

To investigate and model our climate system and its interactions with society to provide reliable, rigorous, and timely scientific results to stimulate sustainable growth, protect the environment and develop science driven adaptation and mitigation policies in a changing climate. To develop foresights and quantitative analysis of our future planet and society.

CMCC is organized in the form of a network distributed throughout Italy.

The network connects public and private entities working together on multidisciplinary studies concerning issues of interest to the climate sciences.

MEMBERS AND INSTITUTIONAL PARTNERS

National Institute of Geophysics and Volcanology (INGV)

University of Salento

Ca' Foscari University Venice

University of Sassari

University of Tuscia

Polytechnic University of Milan

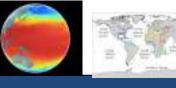
Resources for the Future (RFF)

University of Bologna

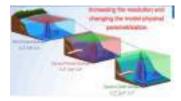
INTERDISCIPLINARY RESEARCH

The scientific organization enhances the integration and collaboration among interdisciplinary skills needed to deal with climate sciences related topics.

The integrated value chain for the Global Coastal Ocean at CMCC

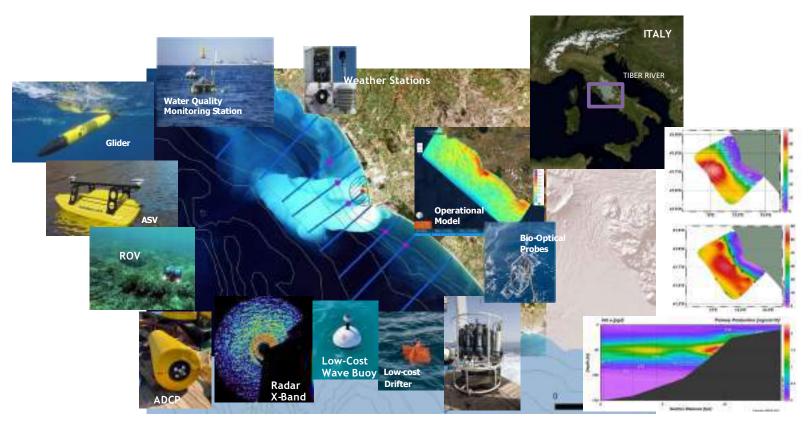

Real time
Ocean Observing
(satellite
and in situ)

Routine ocean monitoring and predicting (physics, sea-ice, biogeochemical cycles and biology)

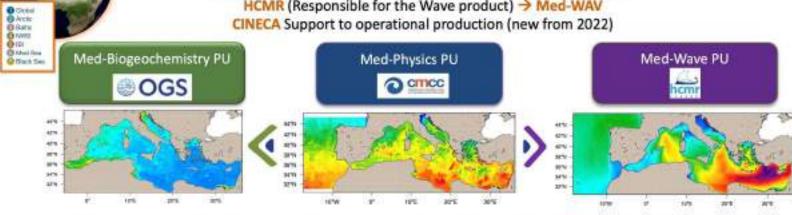


Integrated infrastructure for on-demand modelling and data analytics (AI)

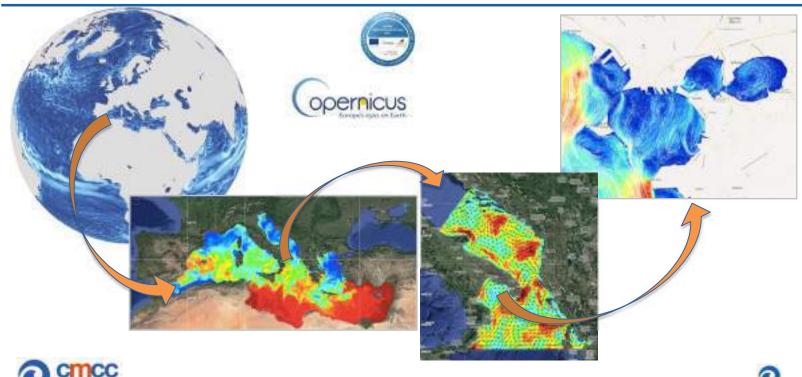
Customized applications (What if scenarios, Ocean indicators, Digital Twins, Early warnings, etc.)



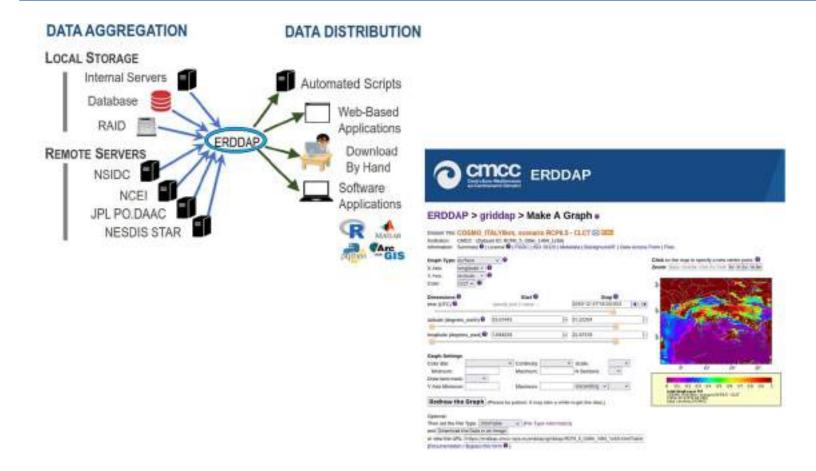
ADVANCED OBSERVING SYSTEMS

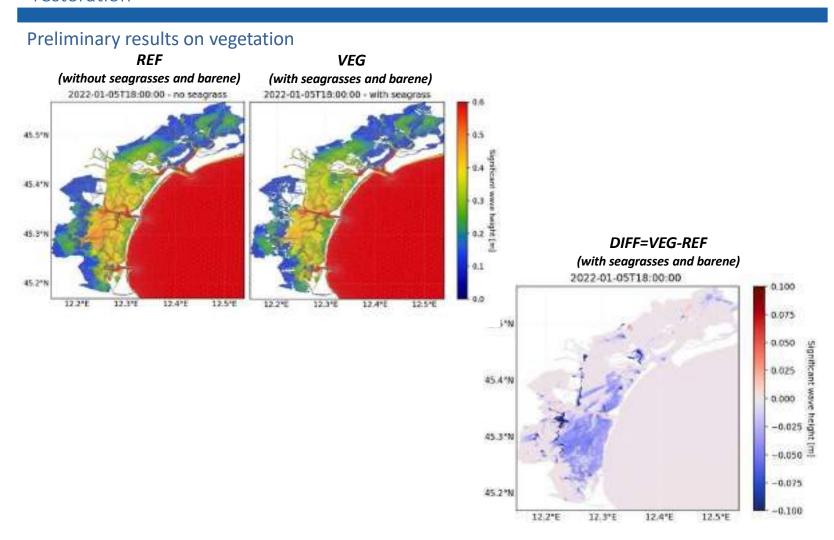

Med-MFC Consortium

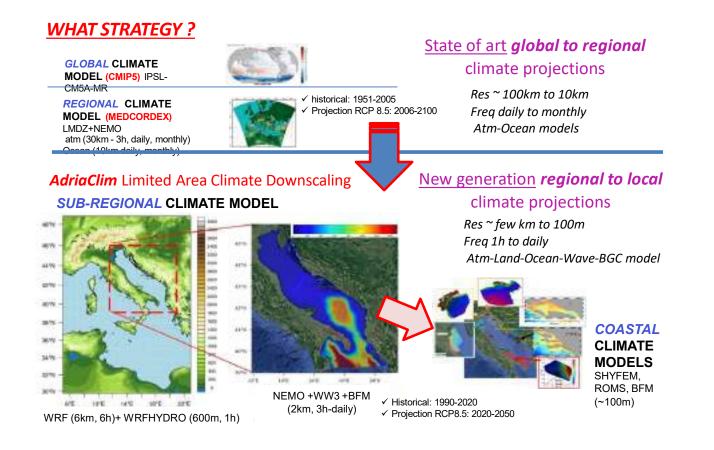
The Med-MFC is one of the 7 MFCs A consortium of 4 institutes


CMCC (Leader of the consortium and responsible for the Physical product) > Med-PHY OGS (Responsible for the Biogeochemical product) -> Med-BIO

HCMR (Responsible for the Wave product) → Med-WAV

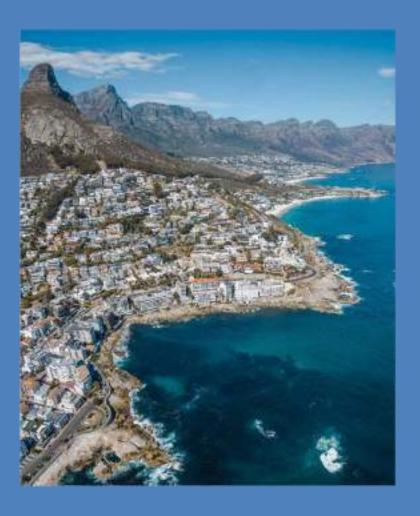

The modelling systems are based on state-of-the-art community models, assimilate insitu and satellite observations and are forced by high resolution atmospheric fields.


Improvements and functioning of the Med-MFC systems are based on the full consistency among the three components which are jointly upgraded and include a continuous amelioration of the accuracy of the products.



CMCC Data distribution systems

The climate downscaling at CMCC



CoastPredict's GlobalCoast initiative

coastpredict.org

This programme is endorsed by the UN Decade of Ocean Science

GlobalCoast

Demonstrate (at Pilot Sites) an integrated observing and predicting system for the global coastal ocean

Create globally replicable solutions, standards, and applications that enhance coastal resilience

Accelerate the data collection and advance modelling and analysis tools to be aligned with best practices and open and free data sharing

GlobalCoast Global Coastal Ocean Experiment

METHODOLOGY

CoastPredict Focus Areas 1-6: Core and Affiliated Projects

LOCALIZATION

GlobalCoast Experiment
Regions of the Global Coastal
Ocean where new technologies &
methods will be demonstrated

GENERALIZATION

Globally relocatable & replicable solutions, standards & applications

Barriers CoastPredict aims to overcome through GlobalCoast

- 1. International networking for Global Coastal Ocean innovation and solutions does not exist
- 2. Fragmentation of knowledge
- 3. Open and free data is still limited to the Global North
- 4. Coastal managers and the public generally not involved
- 5. I'rust in solutions still low
- 6. Study cases take a long time, with limited international collaboration

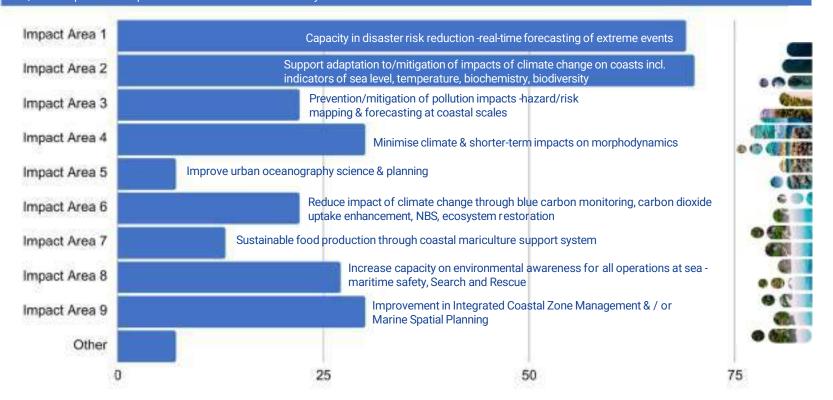
GlobalCoast survey insights

30

Regions of the Global Coastal Ocean

125

Pilot Sites


225

institutions in 65 countries

PRIORITY IMPACT AREAS

Q: Select up to three impact areas that will be addressed in your Pilot Site

Sl'AKEHOLDER GROUPSQ: Who are the key intermediate and end-users for the integrated observing and predicting system to be implemented in your Pilot Site?

Implementation at Pilot Sites

01. New technologies

for the coastal observing system will be implemented, innovated and tested at each Plot Site to validate/calibrate regional and coastal models

O2. Regional-coastal limited area models & Al-based models

will be implemented to assess the range of predictability and understand uncertainties, and provide an impact ensemble framework.

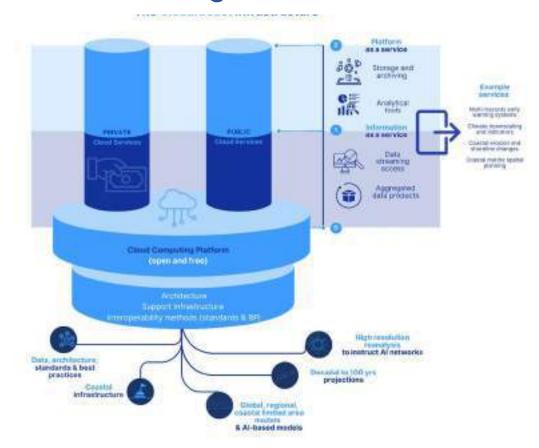
03. 100 years projections

will be produced by implementing regional to coastal climate limited area and Al-based models to downscale climate scenarios

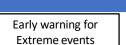
04. High resolution reanalysis to instruct Al networks

will be produced at the coastal scale

The 'accelerator'


Open, free GlobalCoast digital infrastructure

Coastal Resilience requires a vast data and computing infrastructure to make science-based information accessible and usable


- increase the amount of coastal data open and freely available requiring the collection of cost-efficient and community observations with standard protocols
- improve information quality, making analysis tools accessible and demonstrating services built on cloud data

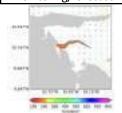
GlobalCoast digital infrastructure

Services that could be develope Relocatable models, Digital Twins, What-if scenarios, Ocean indicators, Early warnings

Coastal Sea Situational **Awareness**

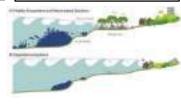
Planning/management of Marine Renewable energy

Support to Coastal management


Ship routing

Marine Protected areas planning&management

Marine pollution monitoring/forecasting



Climate indicators

Nature Based Solutions planning and monitoring

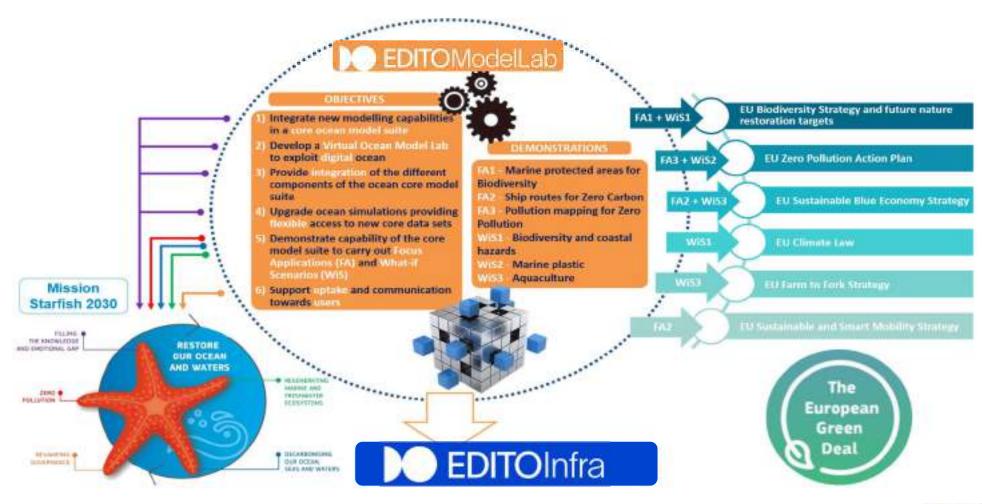
Search and rescue

CDR planning/monitoring

Data visualization

Ocean City and Ports management

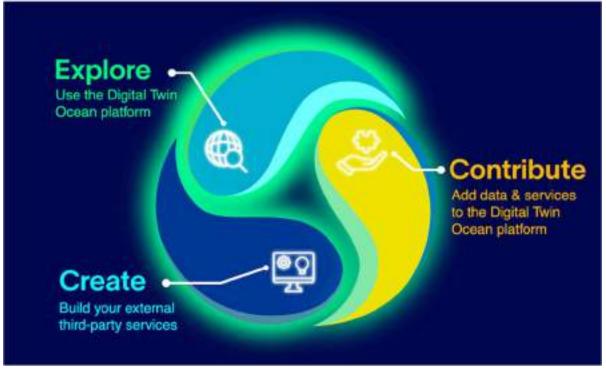
Thank you for your attention


Introduction

Meeting objectives and organisation Y Drillet, M Malicet (MOi)

EDITO Model Lab: Underlying Models for Digital Twin Ocean

To ensure an operational European Digital Twin Ocean (EDITO) core infrastructure by 2024, the building blocks of the initiative are underway through the Horizon Europe-funded sister projects:


Together, these two projects will build the Digital Twin Ocean platform, incorporating a data lake, processing engine and virtual simulation environment.

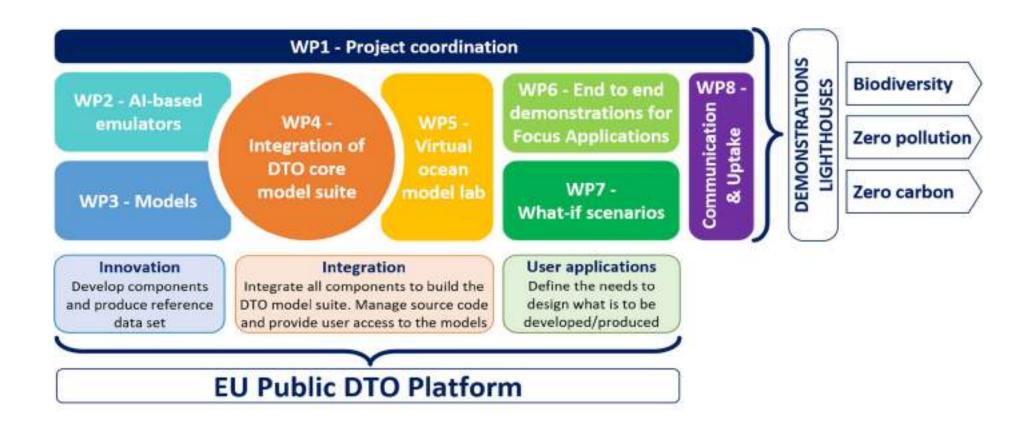
What EDITO will deliver?

An integrated platform

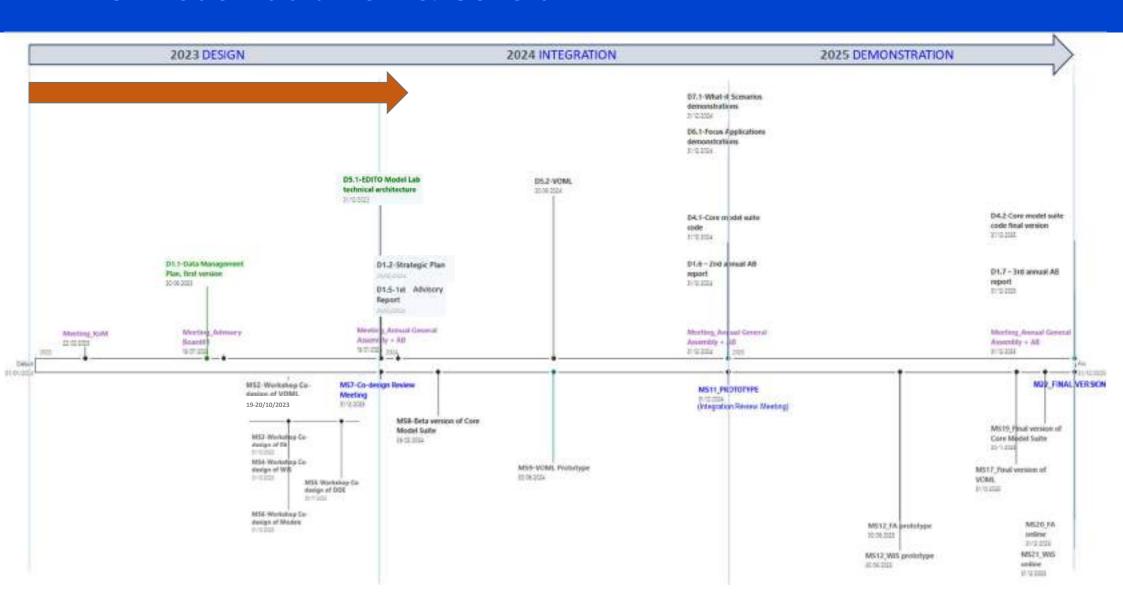
New services

A consortium based on ocean modeling expertise

7M€ 3-year project Kickoff meeting 21-22 Feb 2023


13 partners from 8 countries with expertise in :

- Ocean modeling from global scale to coastal, for ocean physics, biogeochemistry and marine environment
- Supercomputing including experts from computing centers
- Artificial Intelligence applied to ocean application
- Software development, model and tools codevelopment
- Operational oceanography with strong links with Copernicus Marine, Ocean Predict and UN decade
- Intermediate to final User applications



Project organisation

EDITO-Model Lab timeline: General

Objectives of this Annual General Assembly 2024

Status on the project

- Main achievements of the first year of the project: Co design phase of the project has been finalised
- Examples of development performed during the first year
- Plan for next year : Integration started Link

Agenda & Meeting organisation

M Malicet (Moi)

Agenda – DAY 1

Agenda LINK

DAY 1 – PROJECT ACHIEVEMENTS AND WORKPLAN

Tuesday	16 January 2024	Ground floor, Conference Room	
8:30 - 8:55	Welcome with coffee		
9:00 - 9:45	Opening words Goal Definition	CMCC - L Panzera, G Coppini EC - Z Konstantinou (DG Mare), Nicolas Segebarth (DG RTD) MOi - Y Drillet	Advisory Board
9:50-10:35	Achievements/Next steps Project Management/Comm-Dissem-Uptake (WP1/WP8)	+ATLANTIC, MOi	Advisory Board
10:40-11:05	Break with cofree (Ground floor, Coffee Break Room)		
11:10-12:40	Achievements and next steps Al and Models (WP2/WP3)	CMCC, IMT, MOi	Advisory Board
12:45-14:00	Lunch Break – Restaurant Li Risi, via della Libertà 163		
14:15-15:45	Achievements and next steps Core Model Suite and Virtual Ocean Model Lab (WP4 -WP5)	BSC CNS, MOi	Advisory Board
15:45-16:10	Break		
16:15-17:45	Achievements and next steps Focus applications and What-if-Scenarios (WP6- WP7)	CMCC, Deltares, HEREON	Advisory Board
17:45-18:00	Day Closure		
18:00-19:30	Free Time		
19:30 – 21:30	Aperidinner – Restaurant Signuria, via Augusto Imperatore 13		

Agenda – DAY 2 (morning)

DAY 2 morning – USER SESSIONS

Wednesday	y 17 January 2024 Ground floor, Conference Room		
9:30 - 10:30	User Session 1 WiS#1 - Nature Based Solutions for Biodiversity and coastal hazards 1-Presentation of Application 2-Demo 3-Discussion with users	CMCC, DMI, HEREON, UniBO	Advisory Board External Users
10:30-10:50	User Session 2 WiS#2/FA#3 – Zero Pollution 1-Presentation of Application	CMCC, UniBO	Advisory Board External Users
10:50-11:15	Break with cofree (Ground floor, Coffee Break Room)		
11:20-12:00	User Session 2 WiS#2/FA#3 – Zero Pollution 2-Demo 3-Discussion with users	MOi	Advisory Board External Users
12:00-12:40	User Session 3 FA#1 — Marine Protected Areas for Biodiversity 1-Presentation of Application 2-Demo 3-Discussion with users	Deltares	Advisory Board External Users
12:45-14:25	Lunch Break – Restaurant Aglio&Olio, via Bachelet at Centro Commerciale Lo Spazio		- LDITONIOGGILAN

Agenda – DAY 2 (afternoon) + DAY 3 (Partners only)

DAY 2 afternoon + DAY 3 – PROJECT TECHNICAL SESSIONS (Partners only)

Wednesday	17 January 2024	Ground floor, Conference Room
14:30-15:30	Setting up Uptake and Exploitation based on Co-Design Review (WP8)	+ATLANTIC, SOCIB
15:30-17:30	Meeting on Integration (WP4) • Development of the EDITO core model suite (Task 4.2)	CMCC, IMT, MOi
17:30-18:00	Day Closure	
18:00-20:00	Tour of Lecce	

Thursday	18 January 2024	Ground floor, Conference Room
9:30 - 11:00	 Meeting on Integration (WP4) Integration of the EDITO core models suite (Task 4.3) Dedicated session with EDITO Infra 	BSC CNS
11:00-11:25	Break with cofree	
11:30-13:00	 Meeting on Integration Simulations and quantification of the benefit of EDITO models (Task 4.4) Optimization of the workflow of EDITO Model and Technical support (Task 4.5) Dedicated session with EDITO Infra 	CINECA, DMI,
13:00-14:15	Lunch Break - TBC	

Project Advisory Board

S. Garavelli (**CSC**, FI (EOSC, Fair Data))

F. Jourdin (SHOM, FR)

D. Macias Moy (JRC, EU (Modelling))

A. Oliveira (LNEC, PT (Coastal))

J. Piera (**CSIC**, SP (Citizen Science))

A. Rocha (INESC TEC, PT (Iliad))

B. Chapron (IFREMER, FR)

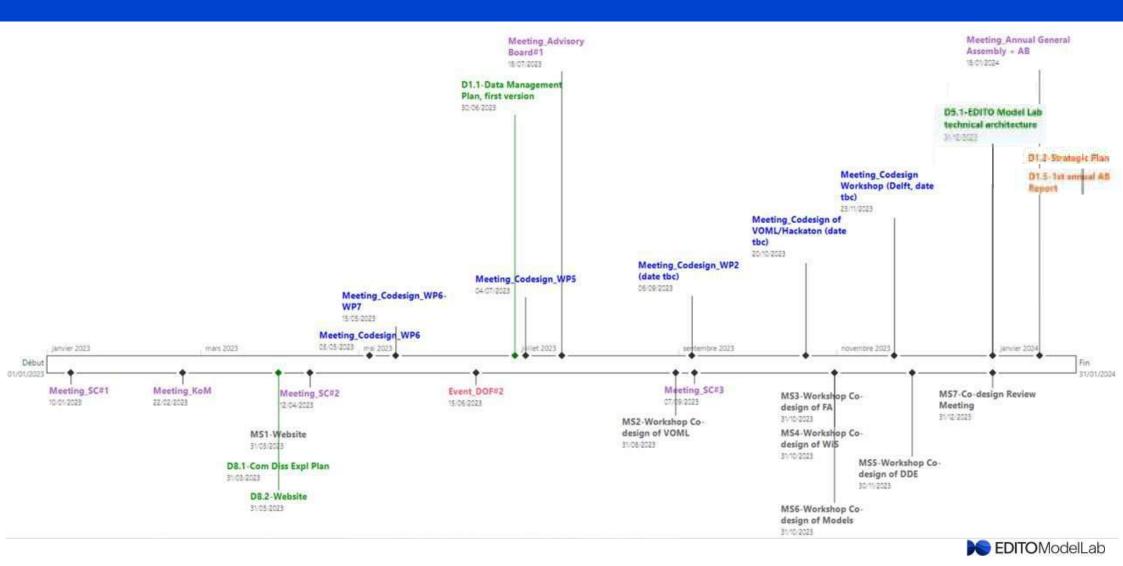
F. Courteille (NVIDIA, UK)

DAY 2 User Sessions – Participants (39)

Your name	Your organization / Your project	
Christine Pequignet	Met Office	
Giulio Ceriola	Planetek Italia	
Aditi Goswami	Boeing/ Al in Aerospace	
Marta Rodrigues	LNEC - Laboratório Nacional de Engenharia Civil / Project: CONNECT	
Marcos G Sotillo	NOW Systems	
Manuela D'Amen	ISPRA - ITALY	
Fearghal O'Donncha	IBM Research Ireland	
Stefania Ciliberti	NOW Systems	
Janaka de Silva	IUCN	
Luc Vandenbulcke seamod.ro / SYROCO		
Katerina Spanoudaki FORTH		
GEORGIOS SYLAIOS	DEMOCRITUS UNIVERSITY OF THRACE / ILIAD	
Barış Salihoğlu	BRIDGE-BS / Middle East Technical University	
Pınar Uygurer	BRIDGE-BS / Middle East Technical University	
Ute Brönner	SINTEF Ocean / Iliad Digital Twins of the Ocean	
Thomas Geenen	ECMWF DestinE	
Patricia Cabrera	VLIZ-BlueCloud2026	
Lawrence Whatley	VLIZ	
Manuel García	NOW Systems	
Derval Corinne	Copernicus Marine, Mercator Ocean	
Gideon Gal	IOLR	
Arne J. Berre	SINTEF	
Christophe BRIERE	REST-COAST	

Your name	Your organization / Your project
Daiga Cepite-Frisfelde	Hywasport
Audrey Hasson	GEO Blue Planet, Mercator Ocean
Elena Osipova	European Environment Agency
Stefania Ciliberti	NOW Systems
Francesco de Franco	Torre Guaceto MPA
Paolo D'Ambrosio	Porto Cesareo MPA
Nicola Ungaro	Environmental Agency of Apulia Region
Comandante di Vascello Francesco Perrotti	Capitaneria di Porto di Gallipoli
Tenente di Vascello Francesco Walter di Marco	Capitaneria di Porto di Otranto
Prof. Alberto Basset	University of Salento
Prof. Stefano Piraino	University of Salento
Prof. Francesco Mastrototaro	University of Bari
Gaetano Internò	Port Authority of Taranto
Francesco Ronco	Apulia Region
Valentina De Pinto	Apulia Region
Carmelo Calamia	Province of Lecce

Achievements and next steps


Project Management / Communication-Dissemination-Uptake (WP1/WP8)

Moderator: Y Drillet (MOi)

Year 1 overview

Year 1 overview

4 Deliverables submitted:

- D8.1 Plan for Communication, Dissemination and Exploitation of results (WP8, April 2023)
- **1** D8.2-Website (WP8, April 2023)
- D1.1-Data Management Plan first version (WP1, June 2023)
- D5.1 EDITO-Model Lab Technical Architecture (WP5, December 2023)

7 Milestones reached:

- Milestone 1-Website (WP8, March 2023)
- Milestone 2-Workshop for co-design of the Virtual Ocean Model Lab (WP5, October 2023)
- Milestone 3-Workshop for co-design of Focus Application (WP6)
- Milestone 4-Workshop for co-design of What-if-Scenarios (WP7)
- Milestone 5-Workshop for co-design of Deep Differentiable Emulators (WP2)
- Milestone 6-Workshop for co-design of the models (WP3)
- Milestone 7-CO-DESIGN (WP1, November 2023)

Numerous Project Meetings, over 20 EDITO events, etc.

Task 1.1 Technical coordination (Lead: MOi | Partners: all). [M1-M36] (D1.2, D1.4; Milestone M7,M11,M22)


MOi, the Project Coordinator (PC) supported by the Project Management Office (PMO), will coordinate scientific, technical and strategic delivery of EDITO-Model Lab, including overseeing the Steering Committee (SC), chairing the decisions of the General Assembly (GA) and managing resources for the external Advisory Board (AB), in addition of taking care of gender balance in each committee and board. The SC will be responsible for the execution of work plan activities.

The internal communication will be coordinated with the communication activities (WP8). A dedicated communication portal that will be settle will offer archiving of conversations, document collaboration features, a repository for documentation, software codes and tracking of project milestones. Technical coordination will be managed with internal reviews, including a design phase and integration phase that will be organised during the project to integrate first the beta version and, at the end, the final version of EDITO core model suite. The technical coordination will be also in charge of management of IT resources dedicated to the project (including HPC and Cloud resources). A strategic plan including scientific and technical roadmap, feedback from the design and HPC and Infrastructure needs will be delivered (D.1.2 and D1.4).

WP1-T1.1 ACHIEVEMENTS (Year 1)

- ☐ 1 Kick-off Meeting | 21-21 February 2023 (with AB)
- **□** 3 Steering Committees:
 - -SC#1 | 10 January 2023
 - -SC#2 | 12 April 2023
 - -SC#3 | 7 September 2023
 - -SC#4 | 11 January 2024
- ☐ 1 dedicated meeting with Advisory Board | 18 July 2023
- ☐ 1 Annual General Assembly , 16-18 January 2024 (presently)

WP1-T1.1 ACHIEVEMENTS (Year 1)

Building on completion of Milestone 2 (WP5):

- Milestone 2-Workshop for co-design of the VOML
 (WP5, 19-20 October 2023) (with EDITO-Infra)
- ✓ A Co-Design technical meeting organized on 19-20 October 2023 in Toulouse, France at Mercator Ocean International, that gathered over 50 on-site beta-testers and remote participants testing and refining the Virtual Ocean Model Lab (VOML) for the EU DTO.
- ✓ https://edito-modellab.eu/news/users-co-design-meeting-kicks-off-testing-for-edito-s-virtual-ocean-model-lab

- Milestone 3-Workshop for co-design of Focus Application (WP6)
- Milestone 4-Workshop for co-design of What-if-Scenarios (WP7)
- Milestone 5-Workshop for co-design of Deep Differentiable Emulators (WP2)
- Milestone 6-Workshop for co-design of the models (WP3)

WP1-T1.1 ACHIEVEMENTS (Year 1)

- ☐ Milestone 7-CO-DESIGN (WP1)
- Co-design review meeting closing Year 1 Co-Design Phase
- -Planned Month 12 (December 2023)

- ✓ A Co-Design Review organized in Delft, The Netherlands, gathering over 70 participants from the Project, its Advisory Board and external parties from across Europe, validating components crucial for the EDITO-Model Lab Technical Architecture.
- https://edito-modellab.eu/news/edito-model-lab-wraps-up-co-desianphase-with-empowering-testers-rsquo-workshop

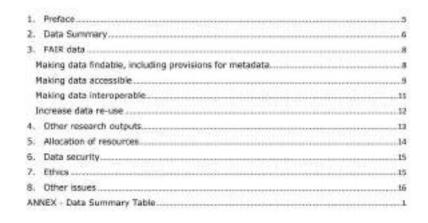
EDITOModelLab

-Achieved Month 11 | 22-23 November 2023 | CO-DESIGN REVIEW MEETING (with AB, EDITO-Infra, Users)

WP1 - Task 1.2 Monitoring progress

Task 1.2 Monitoring progress (Lead: MOi | Partners: all). [M1 – M36] (D1.1, D1.3, D1.5, D1.6, D1.7)

The Project Manager (PM) will oversee the day-to-day operational management and administration tasks of the project with the support of the PMO. A project kick-off meeting and three annual meetings will be held at the end of each project year. Quarterly project virtual meetings will help to: a) monitor general progress and achievement of KPIs of the WPs and risks; b) facilitate communication and scientific discussion and c) assist the reporting process. Annual GA virtual meetings will monitor progress, discuss issues and opportunities and devise mitigation strategies where needed. A risk register and process diagram will be set up at the project inception and managed throughout, the PC will report deviations from the work plan to the GA. The Data Management Plan (DMP) will be defined at the first stage of the project for data and software produced by EDITO-Model Lab (D1.1) and updated at the end of the project D1.3).


WP1 - Task 1.2 Monitoring progress

WP1-T1.2 ACHIEVEMENTS (Year 1)

□ D1.1-Data Management Plan - first version (WP1, June 2023)

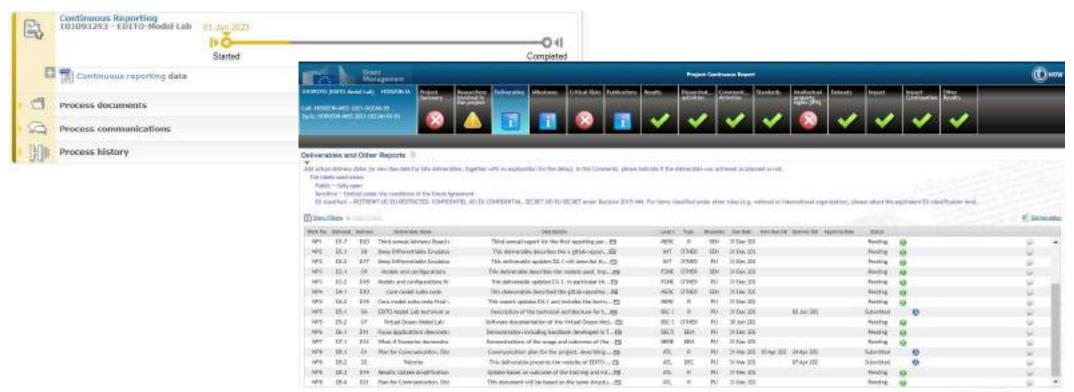
-Planned & Delivered Month 6 (June 2023)

Describes the preliminary plan for the cycle for the data to be collected, processed and/or generated by EDITO-Model Lab, including the description of the management procedure, storage infrastructures and standards that will be used during the project. D1.3-Data Management Plan (final) due Month 36.

CONTRACTOR OF THE PARTY OF THE

WP1 - Task 1.3 Financial and management reporting

Task 1.3 Financial and management reporting (Lead: MOi). [M1 – M36]


This task coordinates the financial flows between the EC and the consortium partners and oversees the financial reporting of the WPs. Periodical financial and management reporting, as well as scientific and technical reporting will be undertaken by the PC along with all partners. WP leaders will be responsible for scientific and technical reporting at the WP level. The number and timing of the financial and management reports are expected to be agreed with the EC in the Grant Agreement.

WP1 - Task 1.3 Financial and management reporting

WP1-T1.3 ACHIEVEMENTS (Year 1, 2023)

☐ Continuous Reporting through EU Funding & Tenders Platform since start of the project

WP1 – WORKPLAN for 2024 (Year 2)

WP1-WORKPLAN for 2024

DELIVERABLES

- □ D1.2 Strategic Plan (WP1-T1.1)
- Strategic Plan including scientific and technical roadmap, feedback from the design and HPC and Infrastructure.
- -Planned Month 12
- -Extented to Month 14 (February 2024)
 - ☐ D1.5 First Annual Advisory Board Report (WP1-T1.2)
- -Planned Month 12
- -Extented to Month 14 (February 2024)
 - ☐ D1.6 Second Advisory Board Report (WP1-T1.2)
- -Planned Month 24 (December 2024)

WP1 – WORKPLAN for 2024 (Year 2)

WP1-WORKPLAN for 2024

MILESTONES

☐ Milestone 11 Prototype (WP1)

Integration review meeting Closing Year 2 Integration Phase

-Expected Month 24 (December 2024)

	Ryering				Payments	
	Reporting periods		Type	Drodiar	Type	Doodker (time to pay
HP.No	Month from	Month to				
(3)	1	II	Preside report	95 days after test of reporting presed	Jeonal Jajouri	Oli days freez receiving prevale report
2		21	Premis report	67 days ofter sed of reporting period	Jennius pripriment	Of-days foota receiving periodic report
3	22	*	Preintie report	60 days offer each of experience periods	Find payment	90 days from receiving pretodo repor

REPORTING

- ☐ Continuous Reporting
- ☐ Periodic Report #1 (technical+financial) (Month 1 to Month 12)
- -Planned end of February 2024
 - ☐ Periodic Report #2 (technical+financial) (Month 13 to Month 21)
- -Expected end of November 2024

WP1 – Project Reviews

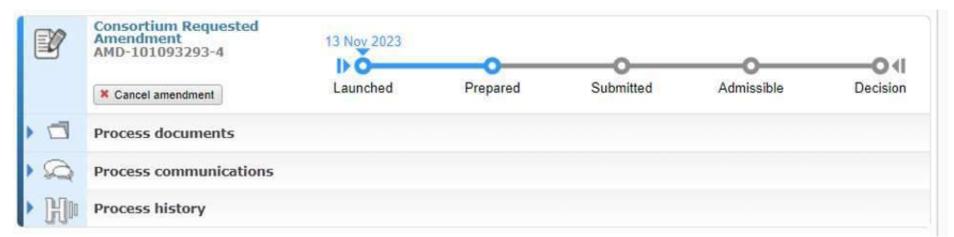
WP1-WORKPLAN for 2024

CHECKS & PROJECT REVIEWS (RV) (GA Art. 25)

- Project reviews are organisedback to back with the reporting periods
- In-depth review of the progress in implementing the work (plan)
- Generally with external reviewers (experts)
 - ☐ RV#1
- -Planned Month 15 (March 2024)
- -Ongoing organisation with EC
 - ☐ RV#2
- -Planned November 2024

PROJECT REVIEWS

Project Reviews Grown Properties (States) across — Since We high			
Review No	Tindag (reek)	Liceton	Comments
EVI.	15	Brassela, TBC	
RNY	23	Brossela, TBC	
RV3	36	Browels, TBC	
	_		


DAKE	X March 2024	Roles.	Location
DESTRUMENTAL DE	D)		Associate
960-910	introduction	PO	
9:30-9:30	EDITO-Model Lab Objectives	MO	
9.30 - 30.30	W# Progress W#2 [10] W#2 [10] W#2 [10] W#4 [10] W#4 [10] W#4 [10] W#7 [10] W#6 [10] Present progress, positly devictions, Portroportion to ejects.	Fartrees	
10:50-11:15	Break		
11:20 - 11:40	Discussion with EC and Seveners	PO, Partmers, Reviewers	
11:40 - 12:00	Doseg remarks/words <u>Approved / rejected / revision</u>	FO	

WP1 – Amendment

☐ Ongoing Amendment Process

Following NVIDIA withdrawal from the Project consortium (regarding IP clause towards ownership of results)

2023 General Assembly

16-18 January 2024 – Lecce, Italy

WP8

Communication, dissemination and uptake

WP Leader +ATLANTIC

WP Partners
All Beneficiaries

MAIN GOALS

- Make EDITO and the project known by a significant network of key stakeholders
- Foster the uptake of the projects' outcomes by relevant users
- Boost networking on DTO matters

SPECIFIC GOALS

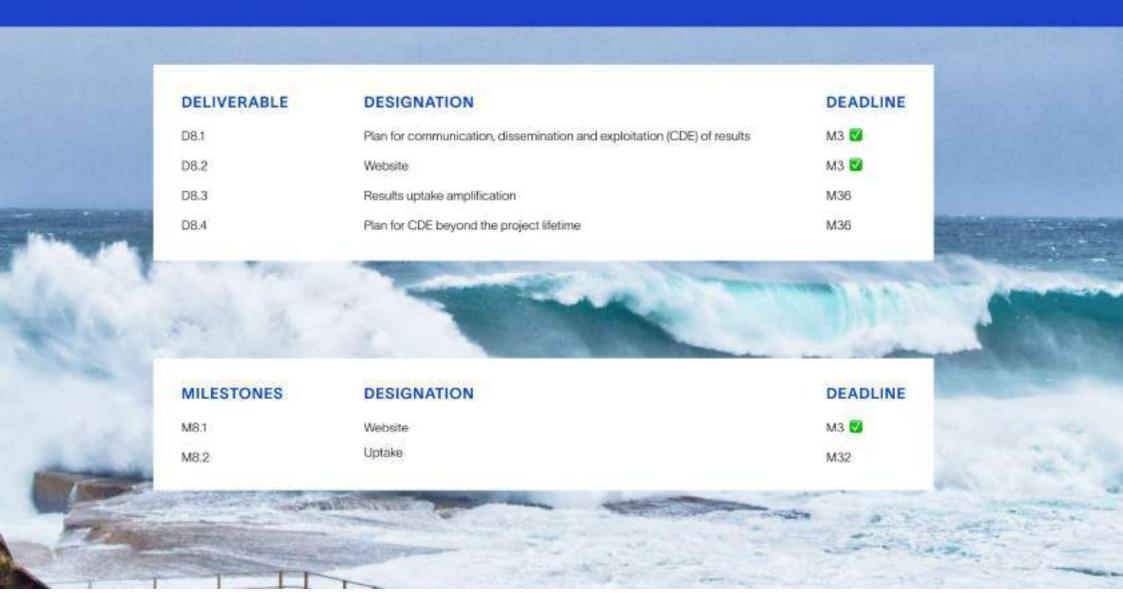
- Run a wide-ranging communication plan to publicise the project's progress (all WPs) and EDITO matters
- Organise two training events (with WP6 and WP7) to further develop the project's products and to demonstrate their utility for end-users
- Expand the awareness of society about EDITO, supporting key global ocean related initiatives

TOP CHALLENGE

 Get significant visibility and build a relevant audience in the very competitive EU projects' landscape

KEY SOLUTION

 Join forces with existing networks and use communication channels of partners and relevant initiatives on DTO and marine matters


T8.1
COMMUNICATION &
DISSEMINATION

Lead: +ATLANTIC Partners: All Duration: M1 to M36 T8.2 TRAINING ORGANISATION

Lead: MOi Partners: +ATLANTIC, Deltares, DMI, Hereon, UniBO Duration: M25 to M36 T8.3 INTERNATIONALISATION

> Lead: +ATLANTIC Partners: MOI Duration: M1 to M36

WP8 Milestones & Deliverables

Communication Working Group

PARTNER	REPRESENTATIVE	EMAIL tiago.garcia@colabatlantic.com	
+ATLANTIC	Tiago Garcia		
MERCATOR OCEAN	Lilian Diarra	Idiarra@mercator-ocean.fr	
NERSC	Julien Brajard	julien.brajard@nersc.no	
UNIBO	Paolo Oddo	paolo.oddo@unibo.it	
DELTARES	Eveline Filon	eveline.filon@deltares.nl	
BSC	Miguel Castrillo Rosa Rodriguez Gasen	miguel.castrillo@bsc.es rosa.rodriguez@bsc.es	
CINECA	Simona Caraceni	s.caraceni@cineca.it	
CMC	Paola Agostini	paola.agostini@cmcc.it	
CNRS			
DMI	Jun She	js@dmi.dk	
HEREON	Carolina Gramcianinov	carolina.gramcianinov@hereon.de	
IMT	Priscillia Creach	s.caraceni@cineca.it	
SOCIB	Baptiste Mourre	bmourre@socibes	

DISSEMINATION IN EVENTS BY PARTNERS

2023 EMD

Brest, FR | Stand

2023 DOF

Brussels, BE | Presentation

2023 EuroGOOS Conference

Galway, IE | Presentation

2023 EMODnet Conference

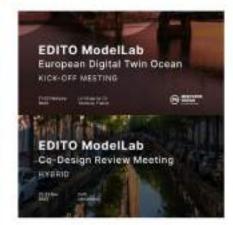
Brussels, BE | Stand and presentation

2023 DITTO Conference

Xiamen, CH | Presentation

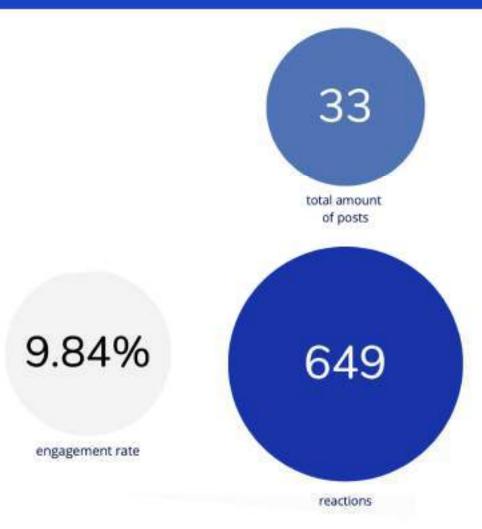
2023 EDITO-Model Lab Co-Design events

Toulouse, FR and Delft, NL | Presentation and hackathon



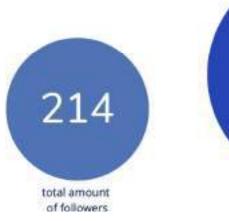
2023 Results

JOINT COMMUNICATION WITH EDITO-INFRA


642

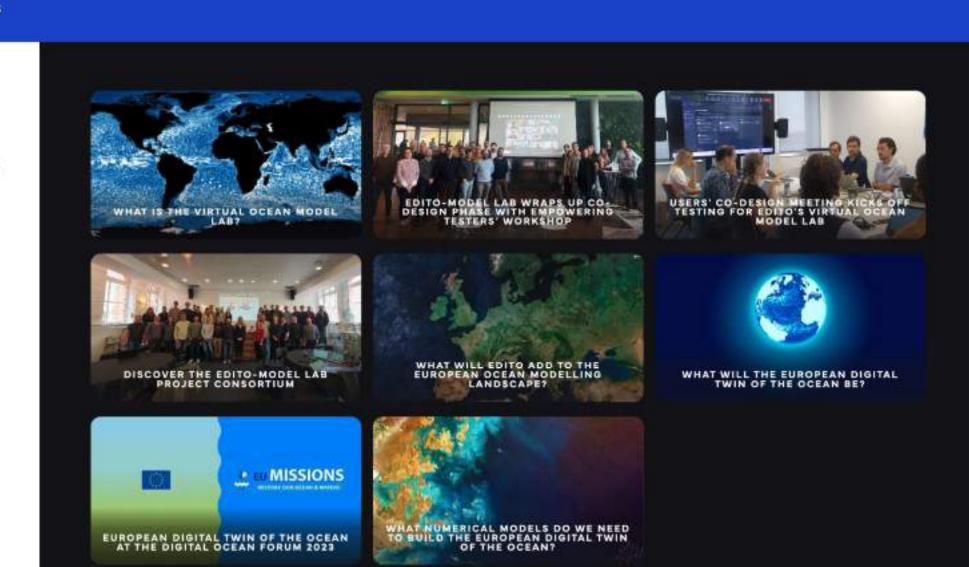
total amount

of followers



2023 Results

JOINT COMMUNICATION WITH EDITO-INFRA



WEBSITE

news articles 8

2023 Results

JOINT COMMUNICATION WITH EDITO-INFRA

Newsletter

1 email

Mailing list

193 subscribers

Happy New Year

from EDITO

As we welcome the new year, we are thrilled to highlight EDITO's key achievements in 2023 and share upcoming milestones and events towards the co-creation of the European Digital Twin Ocean (EU DTO). Our teams, working on Horizon Europe projects EDITO-Infra and EDITO-Model Lab, have diligently crafted the digital architecture of the EDITO virtual platform. This includes a data lake, processing engine, virtual simulation environment, and more.

Next steps

Missing 2023 website news articles (with WP2, WP3 and WP4) Planned early 2024 website news articles (with WP6 and WP7) New video on WiS and FAs (with WP6 and WP7)

Editorial plan for 2024 (April to December) EDITO Newsletter (with EDITO-Infra) Intermediate user engagement plan

UN Ocean Decade Conference Barcelona, SP

Stand, workshop and poster (with MOi and EDITO-Infra) 2024 EGU General Assembly Vienna, AU Presentation (lead by DELTARES) 2024 DOF

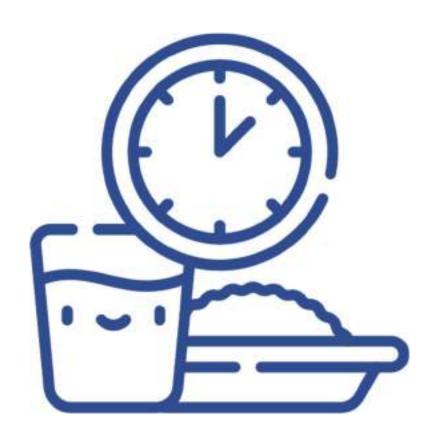
Brussels, BE

Presentation and demonstration

Setting Up Uptake and Exploitation based on Co-Design Review | Day 2 14h30

MODERATOR +ATLANTIC (T Garcia)

RAPPORTEUR +ATLANTIC (S AGUIAR)



General Assembly 16-18 January 2024 – Lecce, Italy

BACK AT 11:10 AM

Achievements and next steps

Al and Models (WP2/WP3) Moderator: G Coppini (CMCC), J She (DMI)

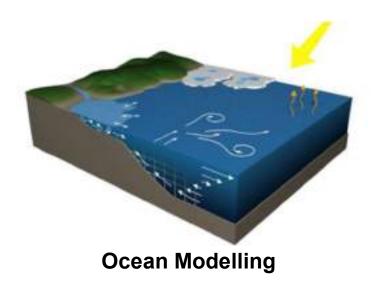
WP 2 – AI based emulators for ocean modelling and forecasting

WP2

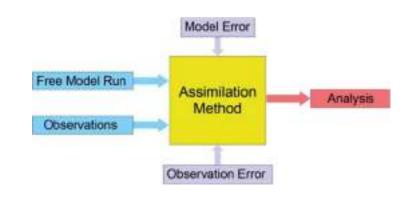
□ Year 1 Achievements - Year 2 Workplan, IMT (R Fablet) (25')

 Example: Towards deep differentiable emulators for NEMO, HEREON (D Greenberg) (15')

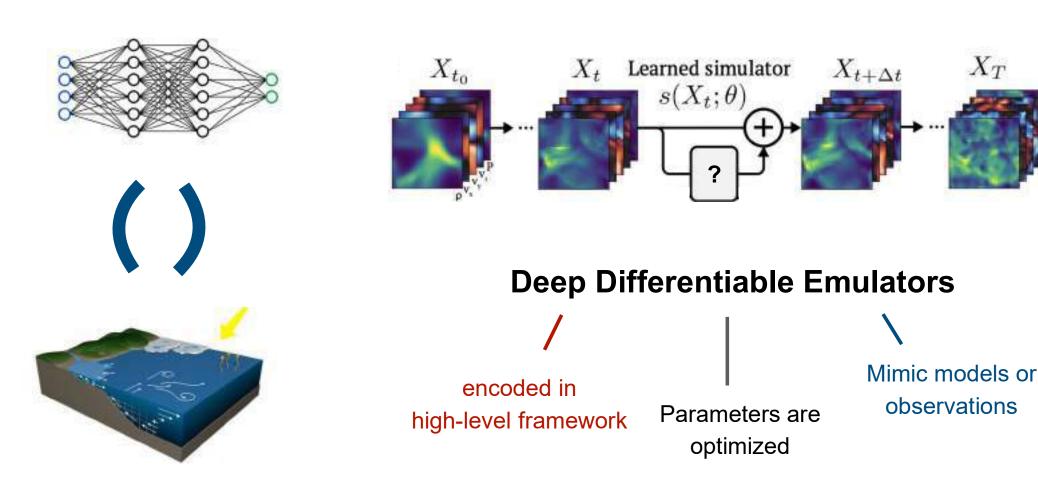
Discussion (5')


https://docs.google.com/presentation/d/1FySlS4-aAOLVPyBis81JqdDnUWo7mX1a/edit?usp=sharing&ouid=110563430246103777852&rtpof=true&sd=true

https://www.dropbox.com/scl/fi/t2sot0s15f0rfgh1gn2vk/pres EditoModelLab WP2 GA 202401-1.pptx?rlkey=jo192l8sscg3iu3n0wqah7fi7&dl=0


WP2 Al-based Emulators for Ocean Modelling and Forecasting

- WP2 partners: IMT, BSC, CNRS, Deltares, NERSC, Hereon
- General objective: Bring Al/DL into the DTO core suite both for ocean modelling and data assimilation systems



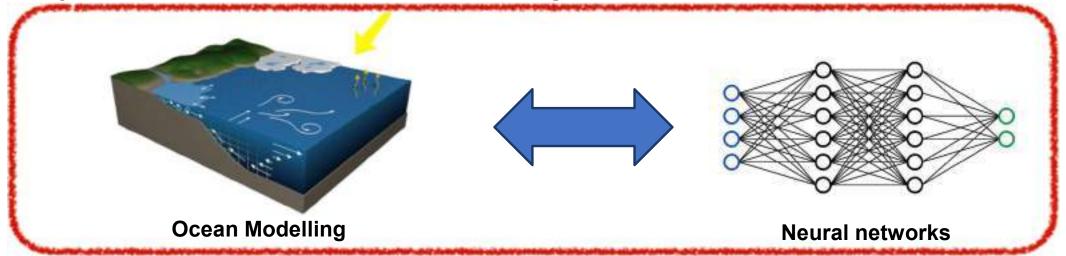
Data Assimilation

PATHWAY TO BRING AI TO EDITO MODEL LAB

MAKING THE MOST OF EXISTING TOOLS AND MODERN SCIENTIFIC MACHINE LEARNING

WP2 Reminder

- General objective: Bring AI/DL into the DTO core suite both for ocean modelling and data assimilation systems using DDEs
- Task 2.1: DDEs for improving ocean models (lead: HEREON)
- Task 2.2: DDEs for simulation, forecasting and reconstruction (lead: CNRS)
- Task 2.3: DDEs for ocean Data Assimilation systems (lead: NERSC)
- **Demonstration case-studies**: Lagrangian drift, sea surface dynamics, turbidity dynamics, NEMO-PISCES
- Year-1 Milestone: co-design of the DDEs

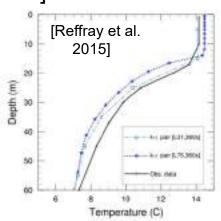


TASK T2.1: DDES FOR IMPROVING OCEAN MODELS (HEREON, IMT, CNRS)

Why: for parameter calibration, for training ML-based closures

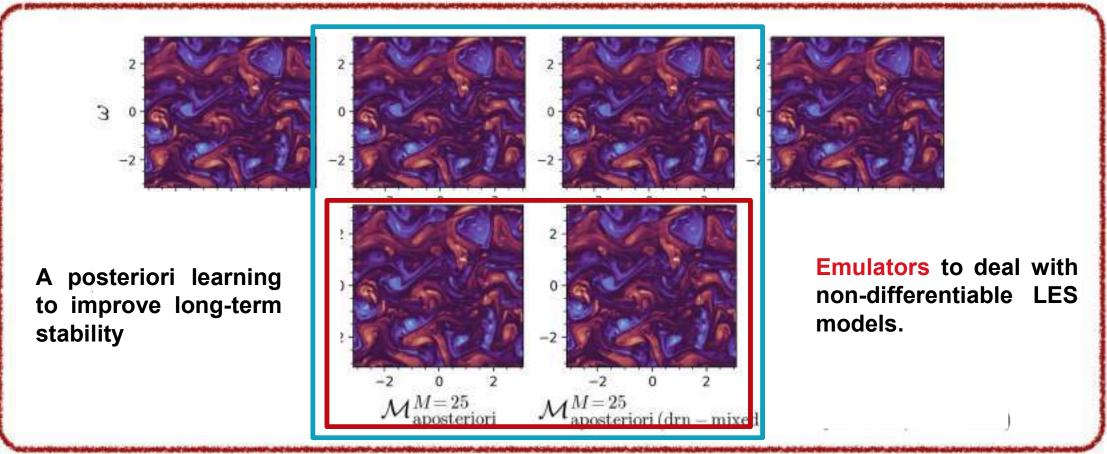
Specific objectives:

- Develop elementary DDE blocks for OGCM parameterization
- Assess the relevance of DDEs for OGCM parameterization
- Demonstration for intermediate-complexity flows (e.g., multi-layer QG flows)


15' Focus presentation by D. Greenberg (Hereon) to follow

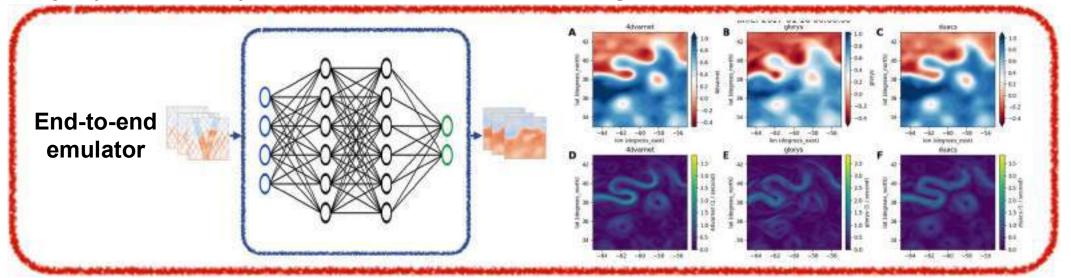
TASK T2.1: DDES FOR IMPROVING OCEAN MODELS (HEREON, IMT, CNRS)

Achievements:


- Develop elementary DDE blocks for OGCM parameterization
- Defined a 2D NEMO setup for development, and generated simulations [Hereon]
- Identified relevant inputs/outputs, prepared training data & dataloaders [Hereon]
- Preliminary emulation experiments [Hereon]

- A differentiable 1Dz version of NEMO schemes in Jax as a baseline for DDEs [CNRS]
- A benchmark case for intercomparing calibration algorithms for vertical physics [CNRS]
- Implementation and evaluation of emulators for NEMO in 2D and 3D [Hereon]

TASK T2.1: DDES FOR IMPROVING OCEAN MODELS (HEREON, IMT, CNRS)

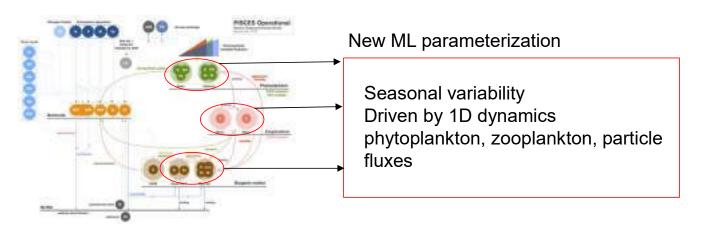

Training neural closures with DDEs for non-differentiable codes

https://arxiv.org/abs/2309.14350

TASK T2.2: DDEs for simulation and forecasting (cnrs, bsc, imt, Deltares)

Why: (End-to-end) DL approaches to forecasting and reconstruction problem

Specific objectives:

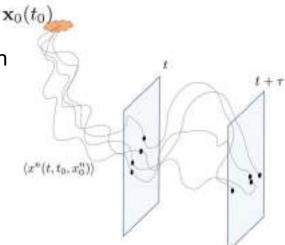

- Emulation of PISCES (BSC)
- Lagrangian drift simulation (IMT, CNRS)
- Mapping and short-term forecasting of sea surface dynamics (SSH, SSC) (IMT, CNRS)
- Mapping of turbidity dynamics (IMT, Deltares)

TASK T2.2: DDEs FOR SIMULATION AND FORECASTING (CNRS, BSC, IMT, DELTARES) Emulation of PISCES (BSC)

Achievements:

- Development of tool to build training dataset for each PISCES target variable
- Compilation of all dependencies for each PISCES target variable

- Definition of sampling strategy for training dataset
- Training and validation of emulators in incremental steps (one variable at the time)



TASK T2.2: DDEs FOR SIMULATION AND FORECASTING (CNRS, BSC, IMT, DELTARES) Lagrangian drift simulation (CNRS, IMT)

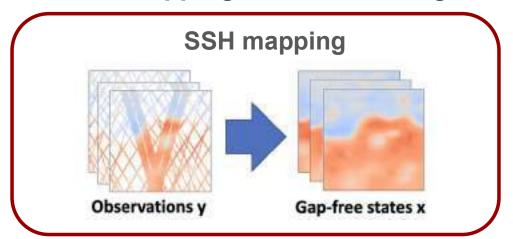
Achievements:

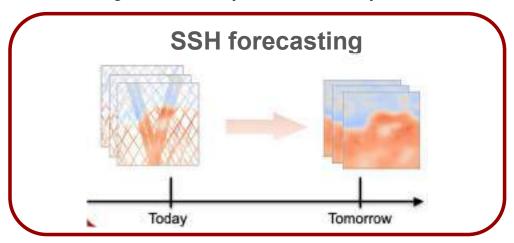
- DDE for the conditional simulation of Lagrangian trajectories. DriftNet (Botvinko et al., 2023; in Prep.)
- OSSE-based POC of probabilistic predictions of lagrangian drift (in prep. for Journ. Oper. Oc., Med Sea)
- Deployment and evaluation for simulation datasets (OSSE) (Gulf Stream and East Pacific regions)
- Preliminary evaluation for real datasets of drifter trajectories

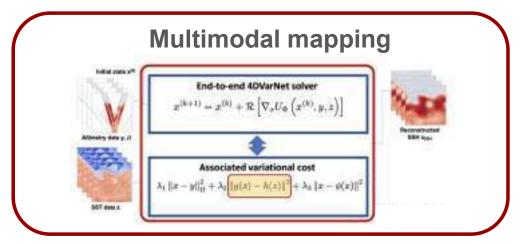
- A benchmark case for ML based reconstruction of lagrangian drift deployed on EDITO platform through OceanBench (global scale, geostrophic currents)
- ML-based models for stochastic predictions of lagrangian drift [CNRS]
- Evaluation for real datasets and case-studies
- Transfer to WP4
- Extension to probabilistic conditional simulations

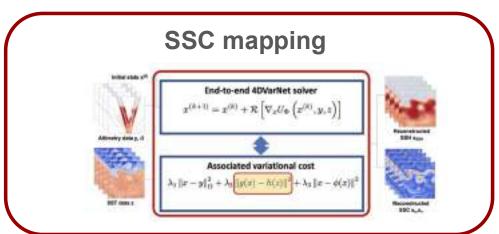
TASK T2.2: DDEs FOR SIMULATION AND FORECASTING (CNRS, BSC, IMT, DELTARES)

Mapping and Forecasting of Sea Surface dynamics (IMT, CNRS)

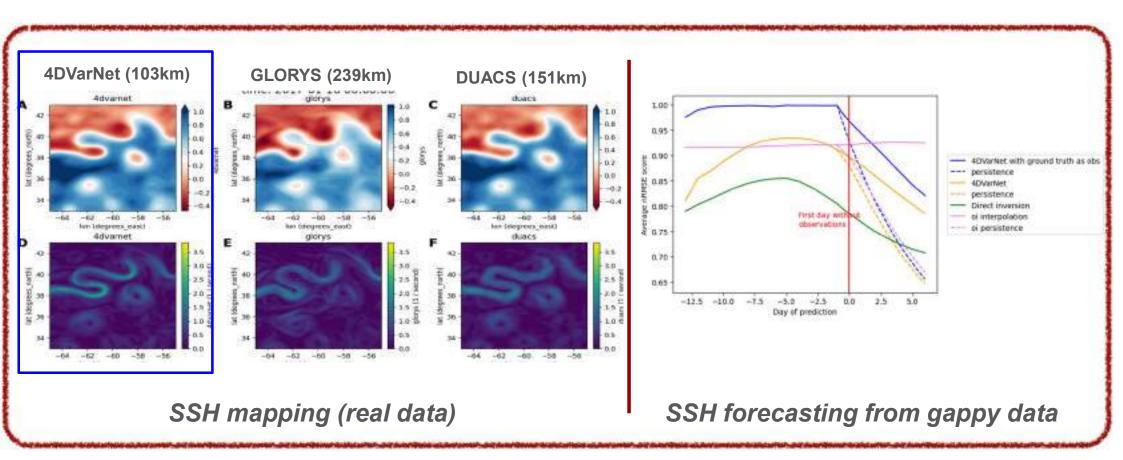

Achievements:


- Dual OSSE-OSE training and evaluation framework for SSH mapping and forecasting (nadir altimetry)
- State-of-the-art performance for a Gulf Stream region (w.r.t. operational mapping/reanalysis schemes)
- OSSE-based POC of SSH forecasting and SSC reconstruction from satellite observations
- Development of a generic toolkit to facilitate the uptake of ocean-related processing and case-studies by ML scientists and of ML tools by ocean scientists (OceanBench, NeurIPS'2023)


- Transfer to WP4 (OceanBench and trained models, dedicated staff at CNRS/IMT-A)
- Benchmarking experiments with real data for SSH short-term forecasting
- OSSE-based POC for the reconstruction/forecasting of 3D+t ocean variables (incl. an operation DA baseline)?


TASK T2.2: DDES FOR SIMULATION AND FORECASTING (CNRS, BSC, IMT, DELTARES)

Mapping and Forecasting of Sea Surface dynamics (IMT, CNRS)



TASK T2.2: DDEs FOR SIMULATION AND FORECASTING (CNRS, BSC, IMT, DELTARES) Mapping and Forecasting of Sea Surface dynamics (IMT, CNRS)

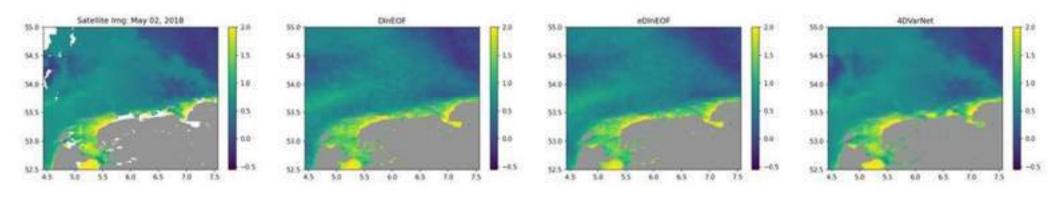
Febvre et al., 2023. https://arxiv.org/abs/2309.14350

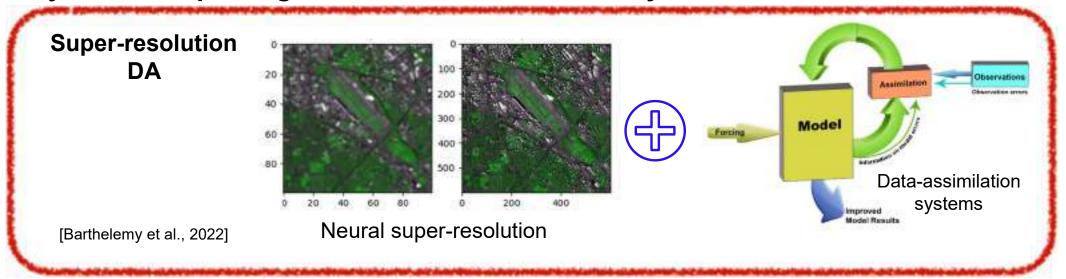
Task T2.2: DDEs for simulation and forecasting (cnrs, bsc, imt, Deltares) Mapping of Turbidity dynamics (IMT, Deltares)

Achievements:

- Design of a North Sea case-study for sea surface turbidity mapping with real satellite data
- Benchmarking of 4DVarNet schemes for the considered case-study
- Development and evaluation of end-to-end learning strategies from gappy training data

- Transfer learning across bio-optical tracers and regions
- 4DVarNet extensions to conditional and/or 3D turbidity reconstruction
- Transfer to WP4


TASK T2.2: DDEs FOR SIMULATION AND FORECASTING (CNRS, BSC, IMT, DELTARES) Mapping of Turbidity dynamics (IMT, Deltares)

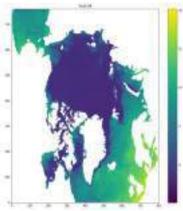

Considered parameter: Non-Agal (Inorganic) Suspended Particulate Matter (SPM) Concentration: unit [mg/l].

Observation data: multi-sensor CMEMS product (incl. SeaWIFS, MERIS, MODIS-A, MODIS-T, VIIRS-SNPP & JPPS1, OLCI-S3A & S3B

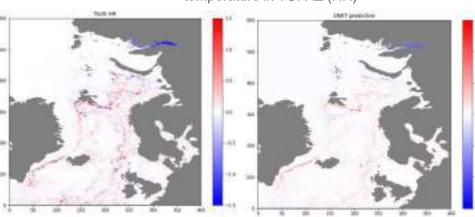
Resolution: 1km/pixel, 240km*300km area, daily measurement

Why: better exploiting observations in ocean DA systems

Specific objectives:


- Demonstration of SR-DA schemes for a realistic OGCM setting
- Demonstration of end-to-end neural DA (4DVarNet) (intermediate-complexity setups and uncertainty quantification)

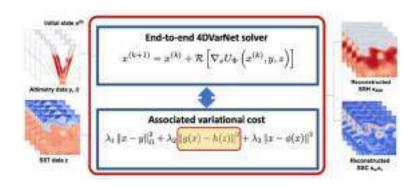
Super-Resolution Data Assimilation (NERSC)

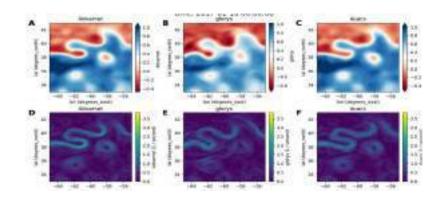

Achievements:

- Creation of the training database, consisting of 2 consistent runs: 1 High Resolution (6 km) and 1 Low Resolution (12 km) with TOPAZ (coupled ocean/ice model in the North Atlantic and Arctic regions)
- Training of a Unet and validation for the surface temperature
- Extension of the EnKF (without ML) for the assimilation for the LR model

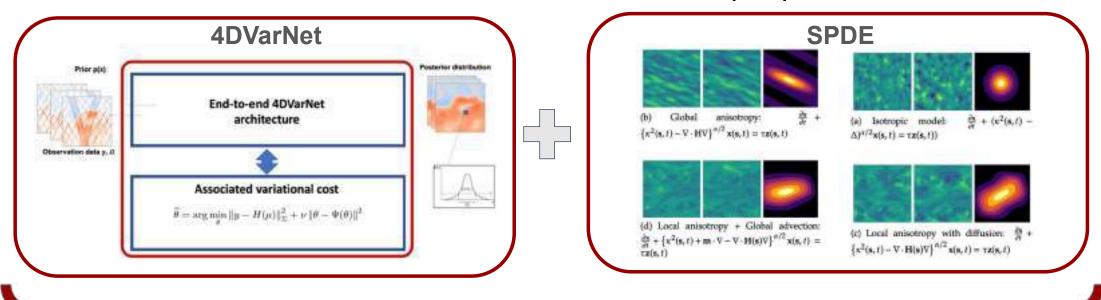
- Extension of the super resolution step for the other variables
- Integration of the Super Resolution in the Data Assimilation process

An example of the surface temperature in TOPAZ (HR)


Residuals to emulate the HR field from the LR field (zoomed in the North Atlantic): targeted truth (left) and computed prediction (right)

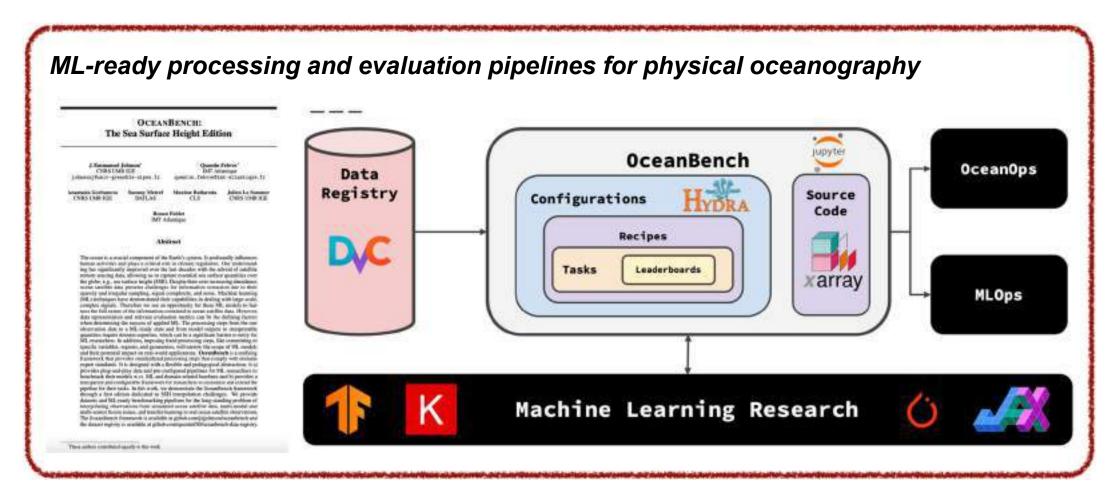

End-to-end neural DA- 4DVarNet (IMT)

Achievements:


- 4DVarNet configurations for short-term forecasting applications
- 4DVarNet with SPDE priors for Uncertainty Quantification (Beauchamp et al., 2023)
- New learning strategies: OSSE-based learning, learning from gappy training datasets
- Ongoing design of intermediate-complexity Al-native benchmarking setups (eg, QG)

- Intermediate-complexity and Al-native benchmarking experiments for end-to-end neural DA
- 4DVarNet schemes for joint model calibration and state estimation
- Transfer to WP4

End-to-end neural DA- 4DVarNet (IMT)



4DVarNet with physics-informed prior (advection-diffusion)

State-of-the-art performance for SSH mapping (OSSE)
Resulting conditional sampling of the state given the observation data

Beauchamp et al., https://arxiv.org/abs/2311.01783

Tools to bring AI into EDITO Model Lab suite

SUMMARY

- **General objective**: Bring AI/DL into the DTO core suite both for ocean modelling and data assimilation systems using DDEs
- Task 2.1: DDEs for ocean model parameterization (lead: HEREON)
- Task 2.2: DDEs for simulation, forecasting and reconstruction (lead: CNRS)
- Task 2.3: DDEs for ocean Data Assimilation systems (lead: NERSC)
- **Demonstration case-studies**: Lagrangian drift, sea surface dynamics, turbidity dynamics, NEMO-PISCES
- Year-1 Milestone: co-design of the DDEs
- Workplan Year-2: Moving on + transfer to WP4

WP 2 – AI based emulators for ocean modelling and forecasting

WP2

- ☐ Year 1 Achievements Year 2 Workplan, IMT (R Fablet) (25')
- Example: Towards deep differentiable emulators for NEMO, HEREON (D Greenberg) (15')

Discussion (5')

https://docs.google.com/presentation/d/1FySlS4-aAOLVPyBis81JqdDnUWo7mX1a/edit?usp=sharing&ouid=110563430246103777852&rtpof=true&sd=true

https://www.dropbox.com/scl/fi/t2sot0s15f0rfgh1gn2vk/pres EditoModelLab WP2 GA 202401-1.pptx?rlkey=jo192l8sscg3iu3n0wqah7fi7&dl=0

Deep Differentiable Emulators Concepts, Aims and Initial Progress for NEMO

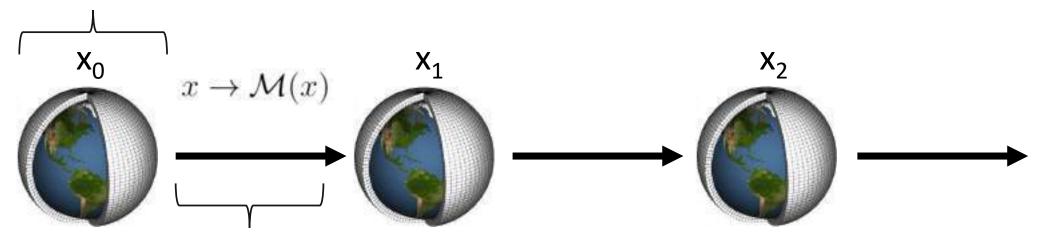
David Greenberg Model-driven Machine Learning Group Helmholtz Centre Hereon

Deep Learning and Optimization IMT Atlantique January 16, 2024

Outline

1 Deep Differentiable Emulators

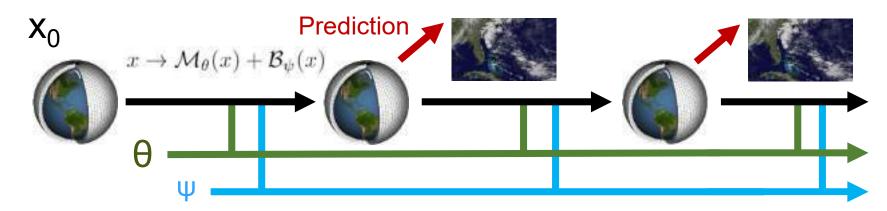
2 Hybrid Emulators


3 Progress in Emulation of NEMO

Simulators as State space models

System state

- Physical variables (pressure, temperature, moisture, ...)
- Snapshot for one time point



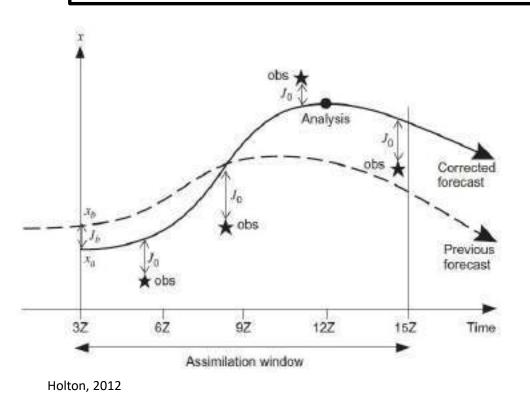
State update function

- Fluid dynamics
- Local physical processes (radiation, turbulence, phase changes, ...)
- Advection of tracers (droplets, aerosols, etc.)

3 optimization tasks in the geosciences

- 1 **Data assimilation**: choose x_0 so predictions match observations
- 2 **Model tuning**: choose simulation parameters θ so predictions match observations
- 3 Learning corrective terms: choose ψ so predictions match observations

Because: unknown physics, sub-grid-scale processes


For all 3 problems, we need $\frac{d\mathcal{M}}{dx}$ in order to optimize our predictions over x_0 , θ or ψ .

But these derivatives are not available for most simulators!

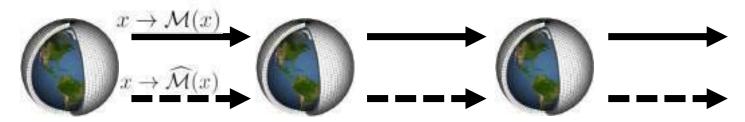
Goal: find a sequence of system states that matches both model and data

Use numerical optimization with hand-written simulator gradient (adjoint) routines?

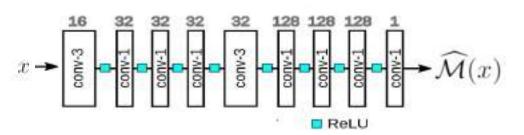
Costly maintenance, inflexible workflows, prone to errors!

Rewrite Earth system models using with automatic differentiation for all computations (JAX, Pytorch, Julia...)?

Large up-front cost, years from feasibility, hardware+software issues!

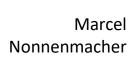

Another way?

Differentiating Simulators with ML



How can we obtain derivatives of the state update function \mathcal{M} ?

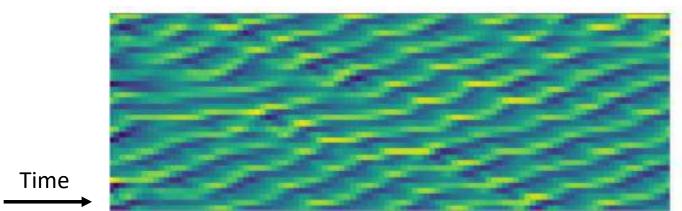
1. Generate simulations


2. Train a neural network to *emulate* the state update function

3. Differentiate the neural network's outputs w.r.t its inputs to obtain:

$$\frac{d\widehat{\mathcal{M}}}{dx} \approx \frac{d\mathcal{M}}{dx}$$

We've used the differentiability of $\widehat{\mathcal{M}}$ <u>twice</u>: once to train it, once to estimate simulator gradients.

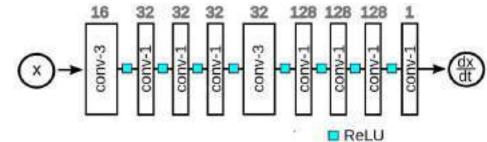

Nonnenmacher & Greenberg, 2020, JAMES

Model System: Lorenz '96

$$\frac{dx_k}{dt} = -x_{k-1} \left(x_{k-2} - x_{k+1} \right) - x_k + F$$
 Lorenz, 1996

- 40 coupled nonlinear differential equations
- Chaotic dynamics (Lyapunov time 1.67 for F = 8)

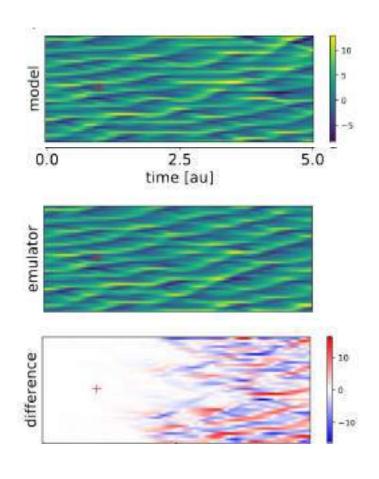
Choosing a Neural Network Architecture for our Emulator Designation Choosing a Neural Network Architecture for our Emulator

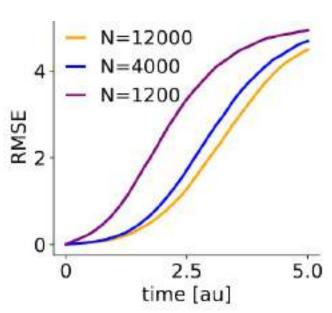

$$\frac{dx_k}{dt} = -x_{k-1} (x_{k-2} - x_{k+1}) - x_k + F$$

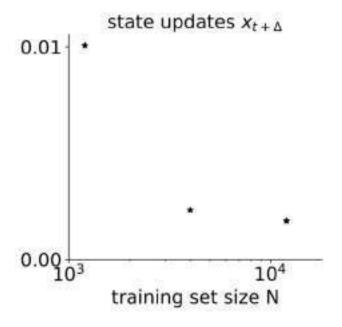
How should we design the network architecture of the emulator?

Decisions to be made:

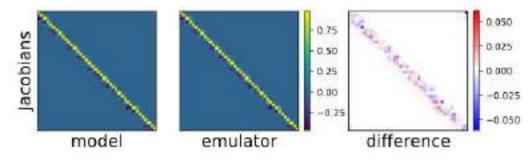
- Number of layers
- Number of units in each layer
- Type of layers (convolutional, recurrent, ...)
- Activation function (Relu, tanh, Elu ...)

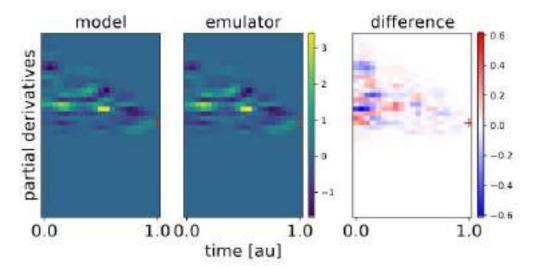

For L96:


- We use 1D convolutional layers to exploit spatial structure and spatial invariance
- We use periodic convolutions to match information flow in the state space
- We use a limited number of layers with size 3 kernels, and the rest operate on each spatial location independently to preserve causal structure for any network depth
- We could also have tried to match the mathematical operations in the simulator (e.g. bilinear layers)

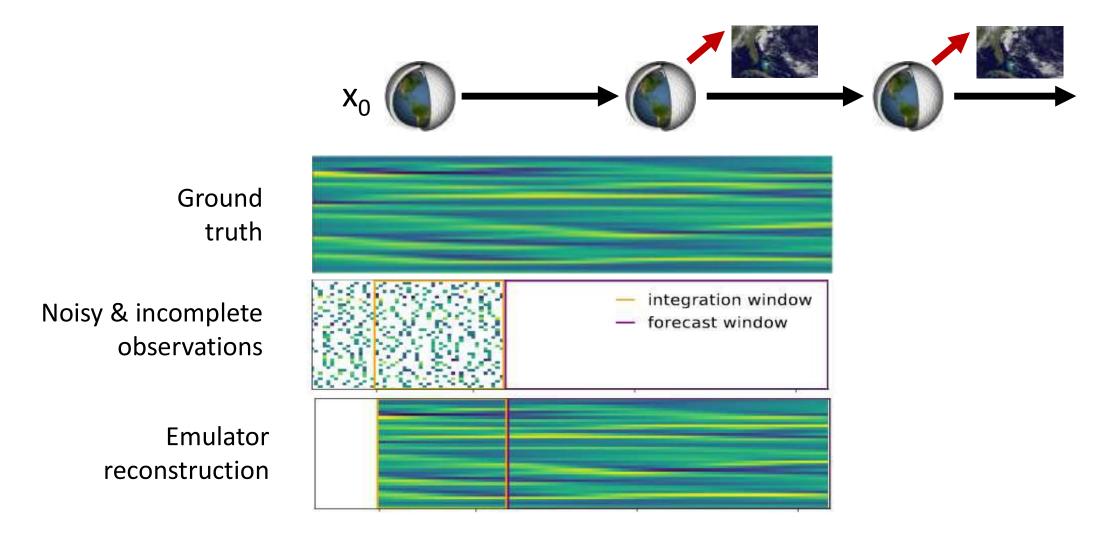

Overall: we can benefit from partial knowledge in architecture design

Accuracy of emulators trained on Lorenz '96

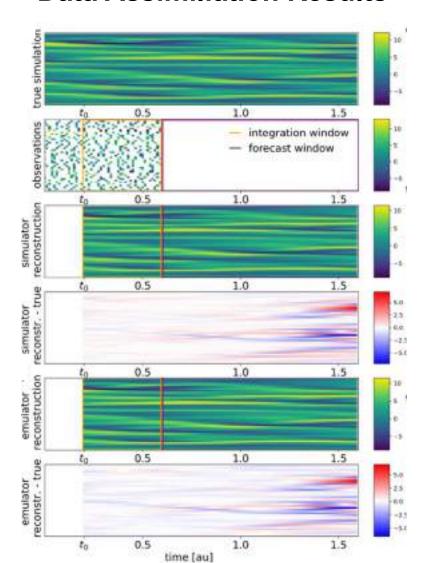


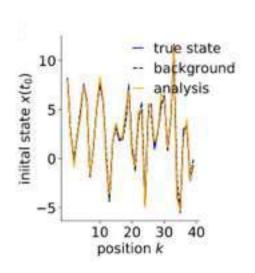

Accuracy of Estimated Input-Output Gradients

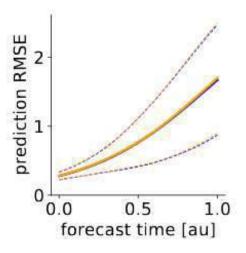
...for a single time step?

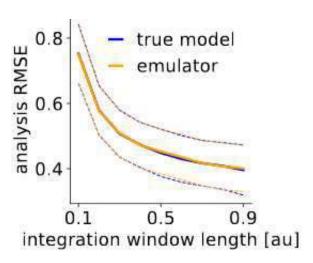


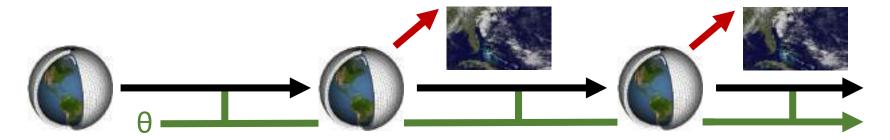
...for longer simulations?

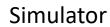


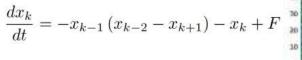

Data Assimilation for L96

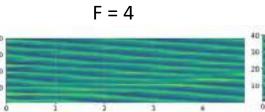


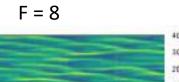

Data Assimiliation Results

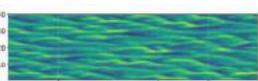




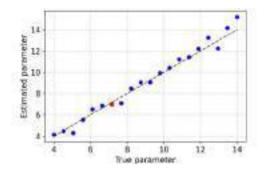



Task 2: Parameter Tuning





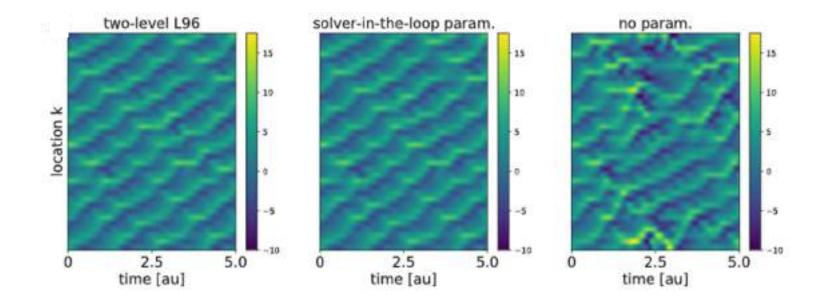




Conditional emulator

Vadim Zinchenko

Task 3: Sub-grid-scale Parametrizations



Fine-scale model

$$\begin{split} \frac{dx_k}{dt} &= -x_{k-1} \left(x_{k-2} - x_{k+1} \right) - x_k + F - hc \mathbb{E}_j[z_{j,k}] \\ \frac{1}{c} \frac{dz_{j,k}}{dt} &= -bz_{j+1,k} \left(z_{j+2,k} - z_{j-1,k} \right) - z_{j,k} + \frac{h}{J} x_k \end{split}$$

Coarse-scale model with corrective term

$$\frac{dx_k}{dt} = -x_{k-1}(x_{k-2} - x_{k+1}) - x_k + F + \mathcal{B}_{\psi}(x_k)$$

Outline

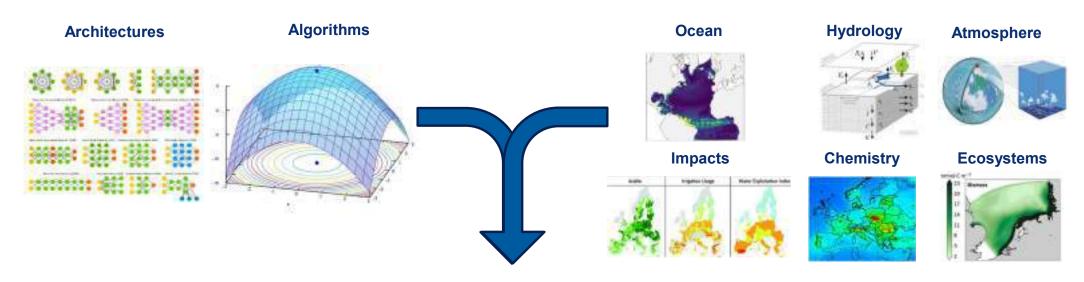
1 Deep Differentiable Emulators

2 Hybrid Emulators

3 Progress in Emulation of NEMO

Complementary Advantages of ML and Simulation

Machine Learning


Performant, efficient

Non-interpretable, poor generalization

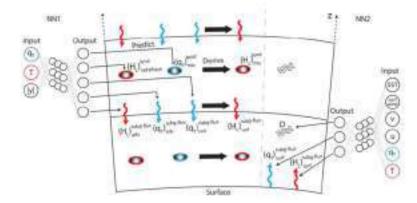
Numerical Simulation

/ Interpretable, physical, good generalization

Hard to fit data, difficult inverse problems

Hybrid Methods

Hybrid Methods I: Enforcing Conservation Laws


Use of neural networks for stable, accurate and physically consistent parameterization of subgrid atmospheric processes with good performance at reduced precision

Janai Yavali, Paul A. O'Gormani, and Chris N. Hilli

⁵Massachusetts Institute of Technology, Candridge, Massachusetts 02139, USA

Abstract

A promising approach to improve climate-model simulations is to replain traditional subgital parameterizations based on simplified physical models by machine tearing algorithms that are date-drivers. However, second arteretic (NNs) often lead to instabilities and elimate doft when complet to an atmospheric model. Here we lines un. NN parameterization from a high-coolation strasspheric circulation in an idealized framain by coorse granting the model equations and comput. The NN parameterization has a sicuriture that courses physical constituiets are respected, and it bonds to stable simulations has a sicuriture that course physical constituiets are respected, and it bonds to stable simulations that explicate the climate of the high-resolution simulation with similar accuracy to a successful random-locust parameterization while moding for low-manney. We find that the annulations are stable for a variety of NN architectures and heckented resolutions, and that an NN with substantially refused mineral previous could decrease computational costs without affecting the quelty of straillations.

Potential and Limitations of Machine Learning for Modeling Warm-Rain Cloud Microphysical Processes

Axel Seifert @ and Stephan Rosp ! @

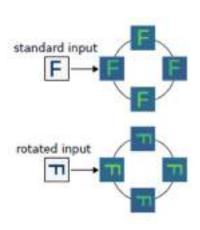
"Deatabas Worwshord, Officeback, Germany, "Thi Mitschen, Marsch, Germany

Abstract. The use of machine learning based on neural networks for cloud microphysical parameterizations is investigated. As an example, we use the warm-rain firmation by relibior-conforcement, that is, the parameterization of autocommentor, accretion, and self-collection of droplets in a two-ensurant framework. Benchmark solutions of the kinetic collection equations are performed using a Monte Carlo superdioplet algorithm. The superdioplet method provides reliable but noisy ostimates of the warm-rain process rates. For each process rate, a neural natwork is trained using searched machine learning techniques. The resulting models make skillful predictions for the process rates when compared to the testing date. However, when solving the ordinary differential equations, the unimities are not as good as those of an established warm-rain parameterization. This deficiency can be seen as a limitation of the machine learning methods that are applied, but at the same time, it points toward a fundamental iil-posedness of the commonly used two moment warm rain schemes. More advanced stacking learning methods that lackade a notion of time derivatives, therefore, have the potential to overcome those problems.

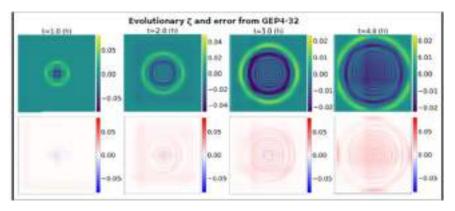
$$\frac{dL_c}{dt} = -AU - AC$$

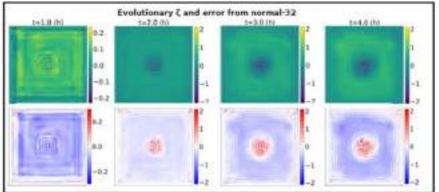
$$\frac{dL_r}{dt} = +AU + AC,$$

$$\frac{dN_c}{dt} = -2AU_N - AC_N - SC_c = -\frac{2}{x_*}AU - \frac{1}{\bar{x}_c}AC - SC_c,$$


$$\frac{dN_r}{dt} = +AU_N + AC_N - SC_r = +\frac{1}{x_*}AU - SC_r,$$

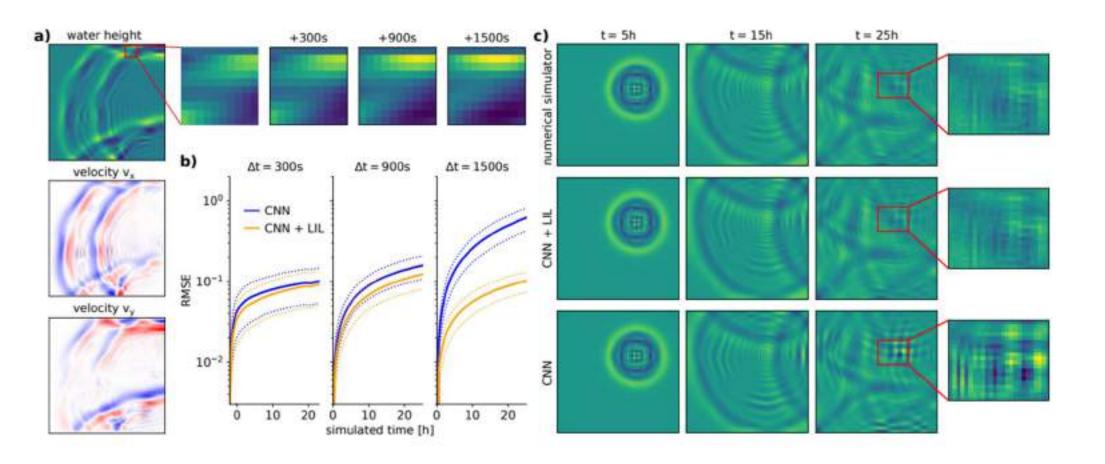
Hybrid Methods II: Exploiting PDE Symmetries




Convolutional networks are translation invariant.

But what about other symmetries present in the PDEs we're solving?

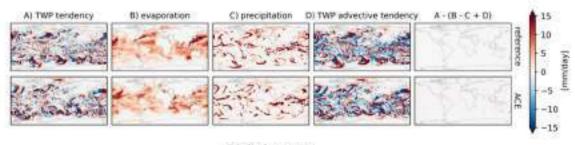
Specialized Convolutional Layers (Cohen & Welling, 2016) 2D Shallow water equations

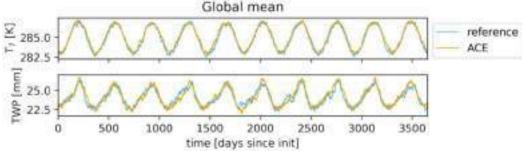


Hybrid Emulators III: Simulation Components as Layers

Outline

1 Deep Differentiable Emulators


2 Hybrid Emulators


3 Progress in Emulation of NEMO

Emulating Larger Models on Longer Time Scales

Al2Climate Emulator Watt-Meyer et al., 2023

Simulation: FV3GFS, $\Delta x=100$ km, 64 levels, fixed SST climatology

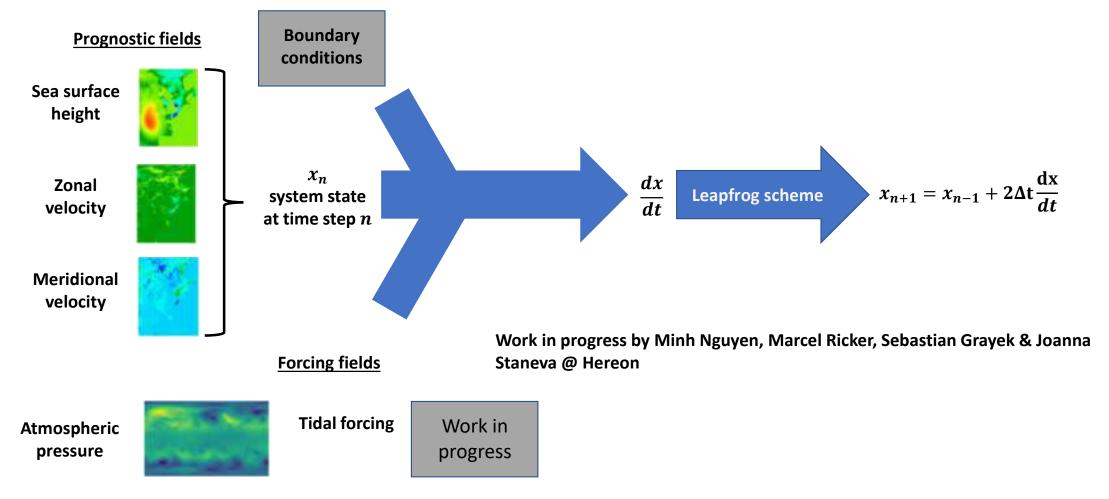
Training data: 8 layers, 1° grid, 6 fields every 6 hours

See also: ClimaX, AtmoRep, ...

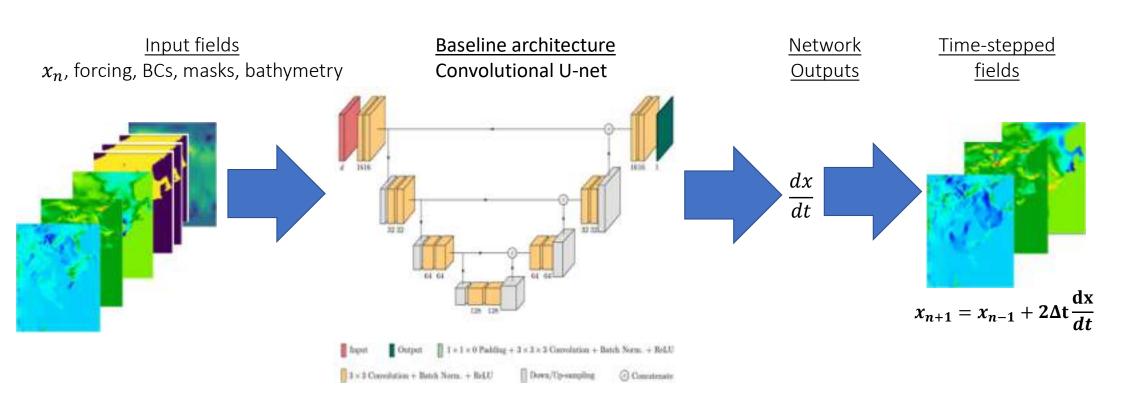
Lots of Progress so far:

- Long time scales (10 years)
- Large datasets
- Training at scale
- Physical + Geometric Consistency
- Useful evaluation metrics

But Many Gaps:

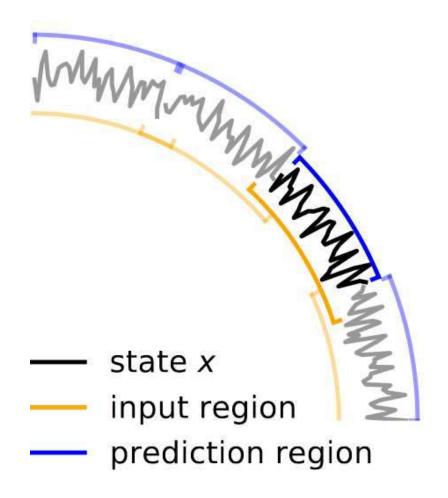

- Few results on ocean / coupled ESMs
- Reduced vertical resolution
- Many fields ignored (TKE, hydrometeors, ...)
- Large and fixed time step doesn't allow data assimilation, parameter tuning or parametrization learning from observations

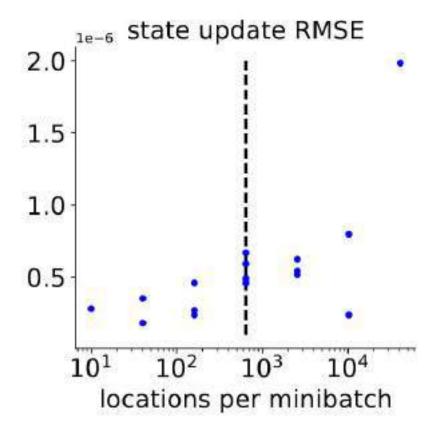
Simplified 2D NEMO Setup for Emulator Development


Initial goal:

emulate a 2D version of NEMO with simplified physics at native time/space resolution

Learning Framework and Architecture


Summary + Next Steps



- Emulators can provide missing derivatives for solving inverse problems
- Accuracy can be improved by constrained hybrid models
- Initial progress with NEMO is proceeding with training data generated from a simplified 2D scheme
- Next steps:
 - optimize and evaluate 2D emulation scheme
 - incorporate tidal forcing
 - o explore and optimize neural architecture
 - physical and geometric constraints
- Medium term:
- 3D NEMO with all relevant fields and physics
- Changing spatial or temporal resolution

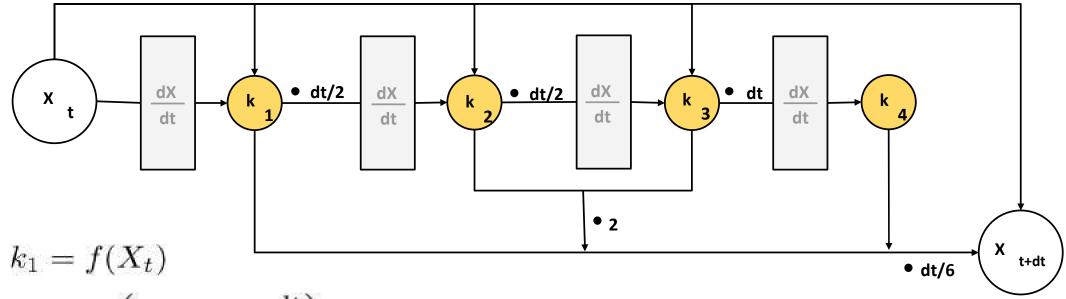
Training on Partial System States

Objective Function for Emulator Training

Objective function Next system s

Next system state update function

$$\mathcal{L}_{\mathrm{DYN}}(\phi) = \sum_{n} ||\mathbf{x}_{n+1} - \widehat{\mathcal{M}}_{\phi}(\mathbf{x}_n)||_2^2 = ||M(\mathbf{x}_n) - \widehat{\mathcal{M}}_{\phi}(\mathbf{x}_n)||_2^2$$


Neural network parameters

Time index

Simulator state update function

Runge-Kutta Integration

$$k_2 = f\left(X_t + k_1 \cdot \frac{dt}{2}\right)$$

$$k_3 = f\left(X_t + k_2 \cdot \frac{dt}{2}\right)$$

$$k_4 = f\left(X_t + k_3 \cdot dt\right)$$

$$X_{t+dt} = X_t + \frac{dt}{6}(k_1 + 2(k_2 + k_3) + k_4)$$

WP 3 – Models for EDITO

WP3:

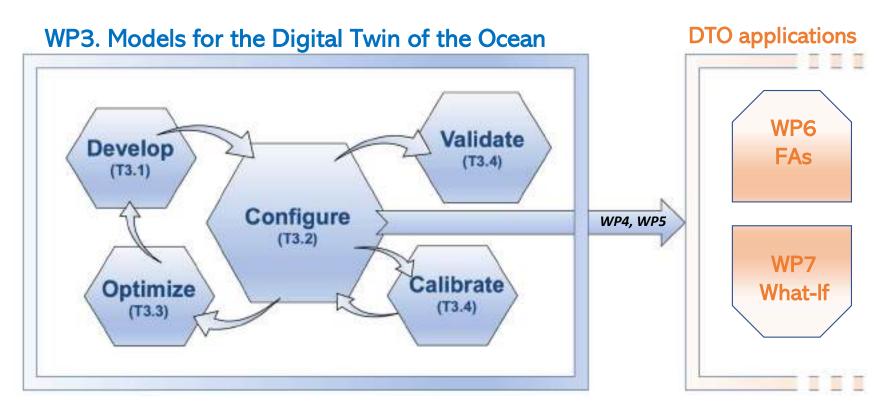
- ☐ Year 1 Achievements/Year 2 Plan, I Federico (CMCC) (25')
- □ Example: Global Configuration of NEMO at 1/36, MOi (C Bricaud) (15')
- \square Discussion (5')

European Digital Twin Ocean

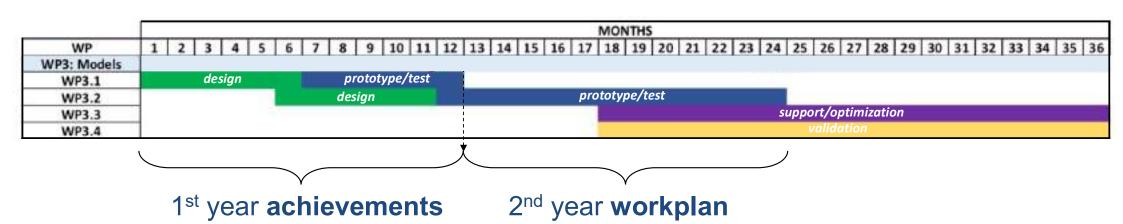
WP3 Models for the Digital Twin of the Ocean

1st Year Achievement & 2nd Year Workplan

I. Federico (CMCC, lead)
J. She (DMI, co-lead)
and WP3 team

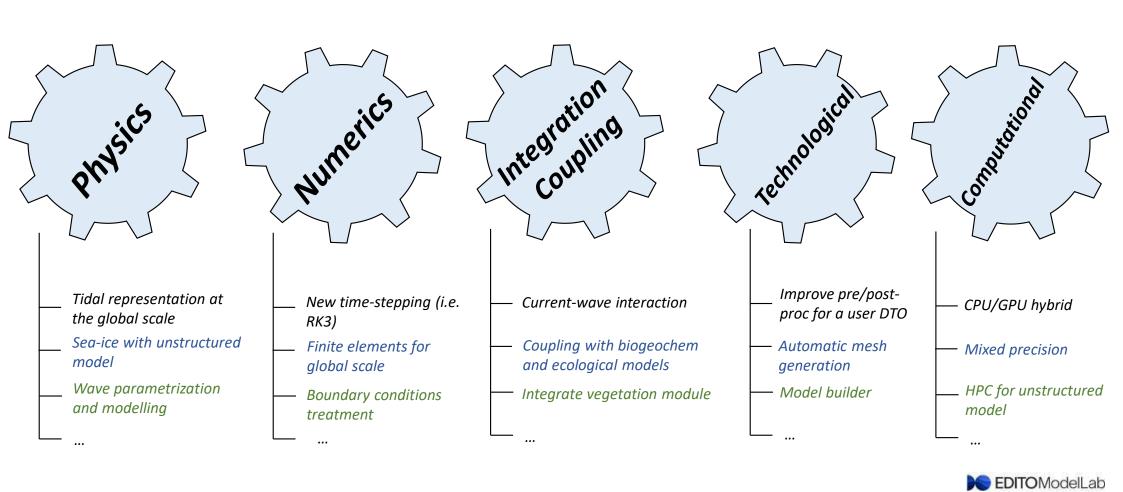

EDITO Model Lab – General Assembly 16-18 January 2024, Lecce, Italy

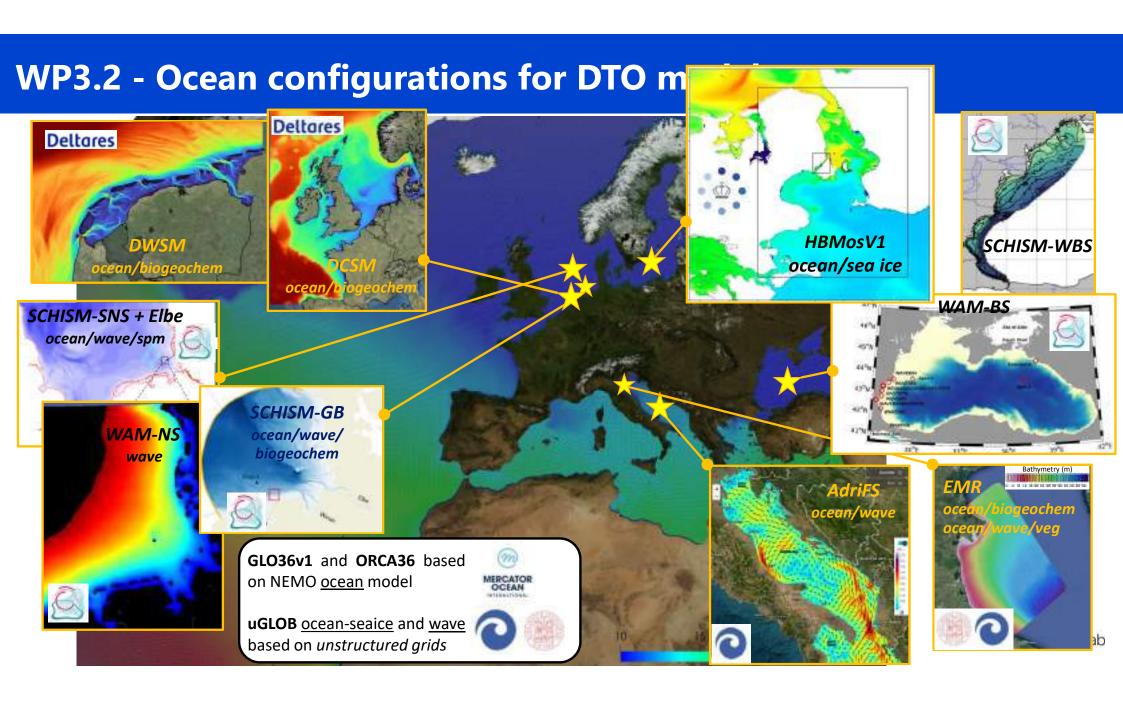
Overview – Numerical models for the Digital Twin of the Ocean

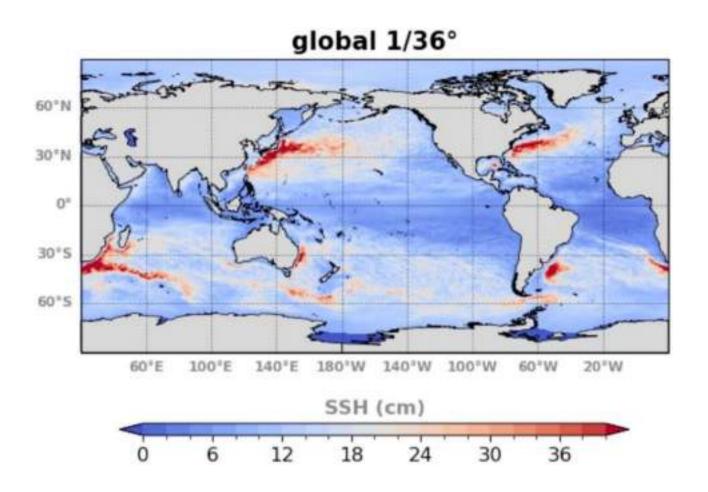

- > Improvement/Development of next generation ocean models for DTO
- Ocean configurations for DTO models
- Optimization of DTO models for HPC and GPUs
- > Calibration/Validation of models with satellite and in situ observations

MAIN OBJECTIVE: consolidate existing numerical models for circulation and waves and develop the next generation of ocean model configurations

Overview – Numerical models for the Digital Twin of the Ocean

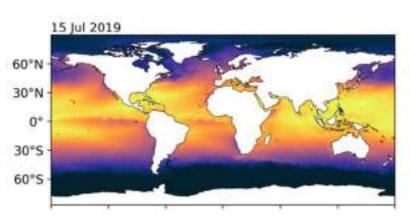

- WP3.1 Improvement/Development of next generation ocean models for DTO
- WP3.2 Ocean configurations for DTO models
- WP3.3 Optimization of DTO models for HPC and GPUs
- WP3.4 Calibration/Validation of models with satellite and in situ observations

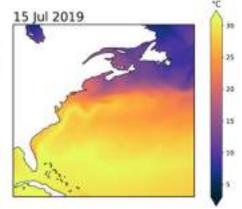


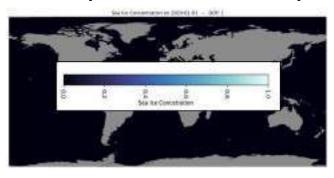

Improvement/Development of next generation ocean models for DTO

WP3.1 - The <u>design</u> phase of the <u>model developments</u>

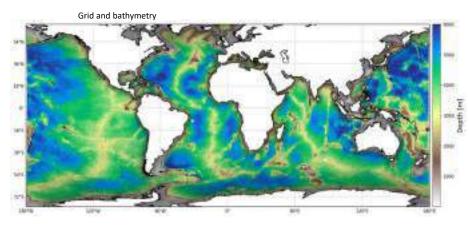
ORCA36 - NEMO1/36


Example of
Ocean Configuration
presented
by Clément Bricaud (MOi)




uGLOB - ocean/sea-ice

Unstructured-grid 3D baroclinic circulation modelling of seamless Global Coastal Ocean ensures continuity and mutual exchanges between the scales



Development of sea-ice component on unstructured grid

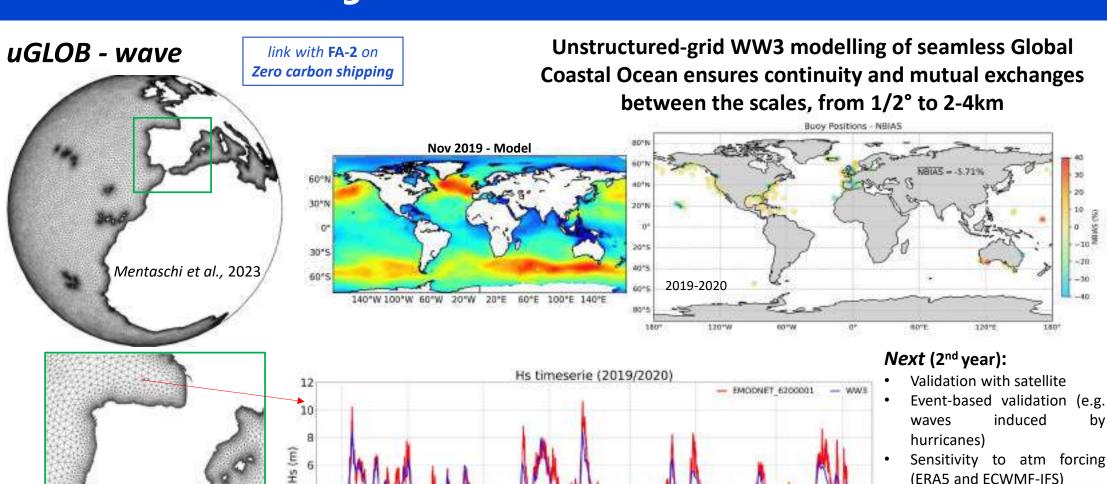
- Column physics (thermodynamics, ice thickness distribution, ridging and associated area/thickness changes) based on Icepack v1.3.2
- Modified EVP mom. eq. solver
- FCT advection scheme

Steps of meshing principles of:

- quasi-Mercator mesh refinement approach, with resolution ranging from 25km to 6km
- (ii) distance from the overall coasts.

Next (2nd year):

- Model developments on ocean (e.g. turbulence, rivers, tides) and sea-ice (e.g. advection) components
- Advance with validation



15-Nov

01-Dec

15-Dec

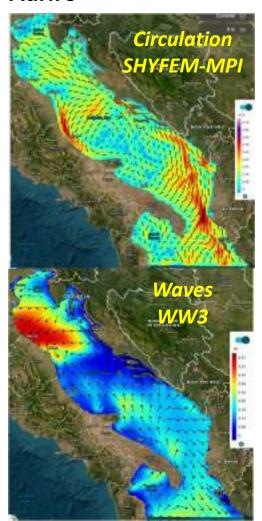
01-jan

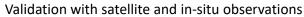
15-Jan

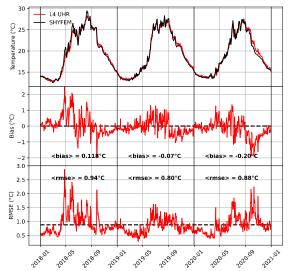
01-Feb

15-Feb

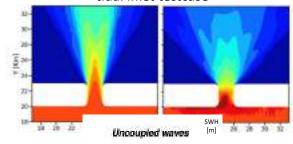
(ERA5 and ECWMF-IFS)

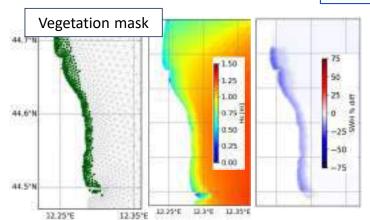


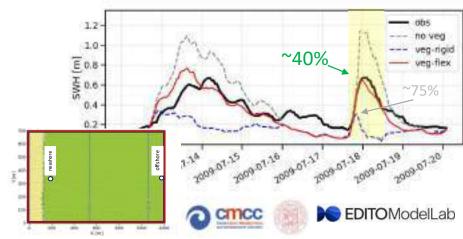




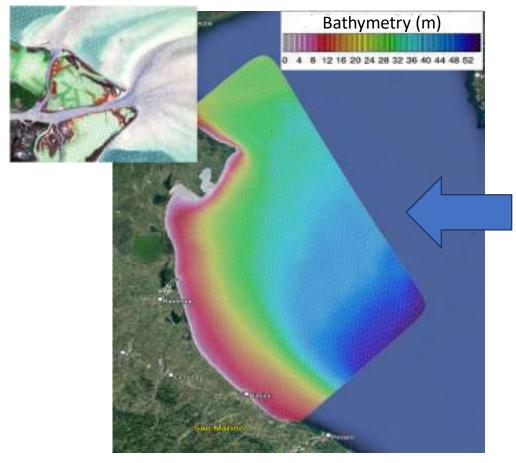
AdriFs > Unstructured resolution from 2km to 300m

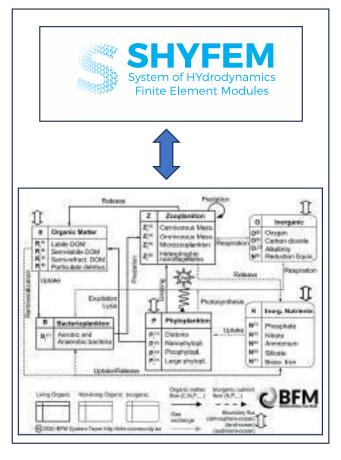

link with **FA-1** on **MPA for biodiversity**


Two-way coupling: validation with tidal inlet testcase


NEXT (2nd year): AdriFs in coupled mode

VEGetation module for the Emilia Romagna domain in Northern Adriatic Sea


link with **WiS-1** on **Nature-based Solutions**

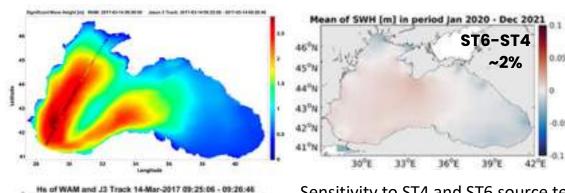


Advancement with vegetation modelling including flexibility of seagrass plants

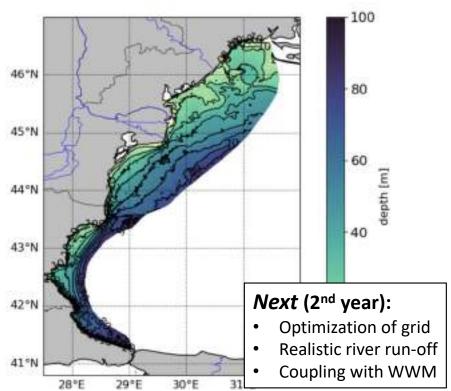
Coupling between the circulation model SHYFEM-MPI and biogeochemistry model BFM for the Emilia Romagna domain in Northern Adriatic Sea in Italy

Idealized and realistic testcases are used to verify and test the coupling procedures.

Next (2nd year):


- Finalization of the coupling
- Calibration and validation of the EMR config

WAM – Black Sea


Sensitivity to ST4 and ST6 source term

Next (2nd year):

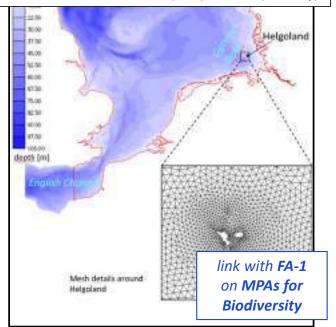
- inclusion of Sea of Azov
- Inclusion of Marmara Sea
- Second forecast cycle
- Tests of new assimilation methods

SCHISM – coastal Western Black Sea

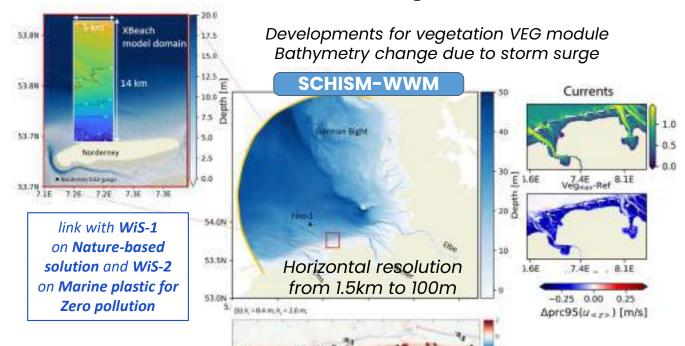
Horizontal resolution from 3 km to 100m

comparison for a wave extreme event

Along-track satellite


link with **WiS-2**on **Marine plastic for Zero pollution**

SCHISM: Southern North Sea + Elbe (ECOSMO)

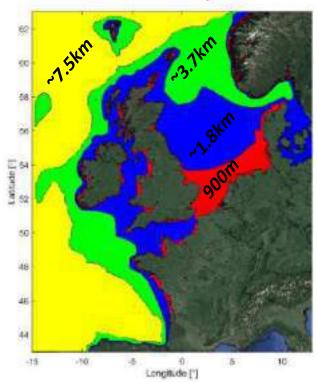

- Coupled hydrodynamic-biogeochemical
- Resolution from 5km (SNS) to 30m (estuary)

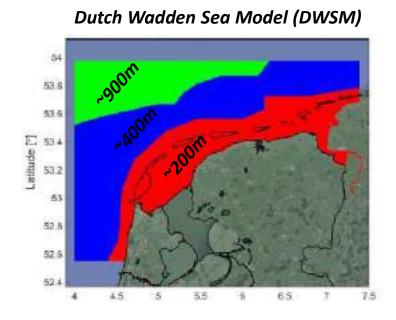
Next (2nd year):

- Inclusion of Weser estuaries to the numerical mesh
- Advancements with biogeochemical developments
- Work on turbulence-sediment-bgc parameterisation

SCHISM – German Bight

Next (2nd year):


- Containerization with Singularity
- Additional X-Beach subdomain for erosion assessment WiS



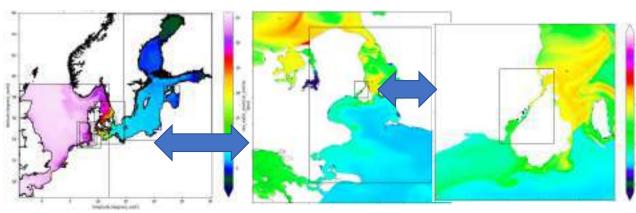
Delft3D-FM including water quality and morphology modules

Dutch Continental Shelf Model (DCSM)

- Bathymetries from Dutch governmental data, combined with EMODnet
- > DW Sea Model nested in either CMEMS or in DCSM (higher resolution)

link with FA-1 on MPA for biodiversity and WiS-3 on Aquaculture for Zero carbon

- Optimization of post-processing of hydrodynamic-; morphologic- and wave model outputs, using D-EcoImpact.
- Improved interoperability of pre-/postprocessing by generalizing formats with HydroLib.


Next (2nd year):

- <u>D-EcoImpact</u>: interoperability, API, GUI, AI-based rules.
- Water Quality: higher resolution (100m), shellfish representation, BMI interface

HBMos: a two-way nested on-demand model for any subdomain of Baltic-North Sea (downscaling up to 37m resolution)

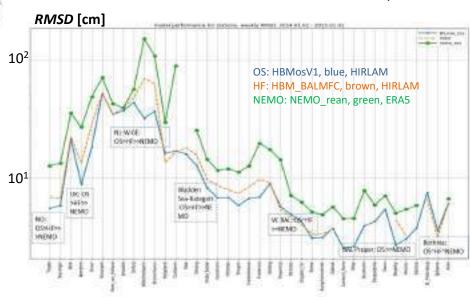
Example for Copenhagen area

Background configuration:

North Sea – Danish wat. – Baltic Sea: 5.5km – 1.8km – 900m resolution

Examples on on-demand configuration:

- Øresund: 180m; Copenhagen: 37m
- OLAMUR Offshore Farms in German Bight, W. Baltic and Estonia: 180m
- Latvia Ports (12 sub-domains): 37m
- On-demand setup for extreme storm surges 180m-37m


link with **WiS-1** on **Nature-based solution** and **WiS-2** on **Marine plastic for Zero pollution**

Baltic-North Sea setup:

- EMODnet bathymetry
- OpenStreetMap coastline
- River discharge from eHype
- HIRLAM/HARMONIE forcing
- LBC: tides, T/S and surge
- Implement MP module in HBMos and develop MP resuspension

Next (2nd year):

- Finalize R&D on HBMos-MP module
- EuroHPC Tests (optimization?)
- HBMos-WAM coupling (optional)
- More validations (incl. Satellite SST)

Overview on T3.1/T3.2: Model developments and Ocean Configurations (M1-M24)

1st Year Achievements:

- Finalization of the **design phase** of **Development** of Next Generation Ocean Models for DTO (T3.1)
- Ocean configurations (T3.2) and implementations of global and regional-coastal models for DTO in advanced stage - to be linked with the different FAs and WiSs (WP6 + WP7)

2nd Year Workplan:

- Configurations already mature and well-established for integration into VOML and support for FAs and WiSs
- Finalization of all the model developments and Ocean Configurations

T3.3: Optimisation of DTO models for HPC and GPUs (M18-M36) CINECA

>T3.3.1: Optimisation of Model efficiency

➤ NEMO ORCA configurations

As preliminary work a <u>Mixed-precision version</u> of ORCA1 with ICE is created (~30% improvement in performance)

- Validating ORCA12 is in progress
- Create and start validating ORCA36 mixed-precision configuration
- Extend **GPU porting** to entire ICE (icedyn_adv_pra) module
- Assessing overall performance

> Unstructured-grid models

- Improvement of I/O management via XIOS under testing
- Optimization of domain decomposition partitioning for unstructured grids
- Optimization of sparse matrix solver

T3.3: Optimisation of DTO models for HPC and GPUs (M18-M36)

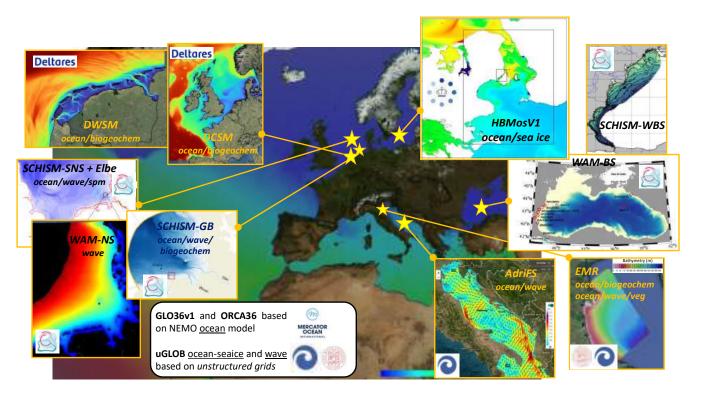
- >T3.3.2: Evaluation of model scalability and performance
- CINECA
- Definition and use of suitable **computational metrics** (PoP metrics, performance portability metrics from literature, speed-up, efficiency....perf./Watt...)
- **Assessment campaign** (TBD) based on top of the previously defined computational metrics and optimised models. This includes:
 - EuroHPC hardware selection
 - Model configurations from Task T3.2
 - Assessment campaign (in strict cooperation with PoP CoE?)

T3.4: Validation/calibration of models with satellite and in situ observations (M18-M36)

1. Design of the validation method (M18)

- Define ocean configurations to be validated: T3.4 should focus on key ocean configurations
- Define validation period and extreme events:
 - A common <u>1-year period</u> should be used as much as possible, as this allows model intercomparison
 - Ideally a <u>recent year</u> is preferred which can be compared with CMEMS forecast
 - Events-based: storm surge, marine heatwaves, inflow events
- Define validation <u>parameters</u>: T, S, sea level, currents, ice, SWH, wave period
- Define validation <u>metrics</u>: ideally CMEMS validation metrics can be used.

2. Validation implementation (M24)


- Input dataset preparation (CMEMS datasets?)
- One-year simulation
- General validation
- Event-based validation
- Intercomparison (between EDITO models, and between EDITO and CMEMS models link with T4.4)

3. Reporting and publication (M30)

T3.4: Validation/calibration of models with satellite and in situ observations (M18-M36)

Ocean configurations to be validated

PARTNEROS)	NAME OF THE OCEAN	GEOGRAPHIC	in the second of	
ENVOLVED	CONFIGURATION	AL REGION	MODEL(S)	
MOL	GLONY	Gold	NEMO	
MOE	ORCAJ6 free runs	(Zohal	NEWS	
CMCCIENIBO	eGLOBeens	Clebal	SHYPEM- MPUSeake	
CMCCUNISO	eGLOBware	Gold	WW)	
CMCC	Adelle	Admire Sea	SHYPEM- MPL/WWY	
untaci	ERSt-binger	Northern Adminic Sea	SINTEN-MP	
UNBOCMCC	ERM-vog	Admini See	MPLWW3	
DME	HB96ssV)	Baltic North Sea	HBM:	
Detrace	DCXM (Datch Continental Shelf Model)	North Sea	Delth 3D-FM	
Deltano	(Datch Walden Sea Model)	Wadden Sea	Delft3D-FM	
Horeon	SCHISM-GB	Geroon Right	NOSEDID MISEDID	
Heren	SCHESN-SNS = Elbe	southern North Sea + Elbc catuary	SCHISM	
Hereon	WAM-NSW	North Sea	WAM	
Herece	WAM-BS	Black Sea	WAM	
Therein	SCHISM-WIIS	Western Black Sea	SCHEWWAY	

T3.4: Validation/calibration of models with satellite and in situ observations (M18-M36)

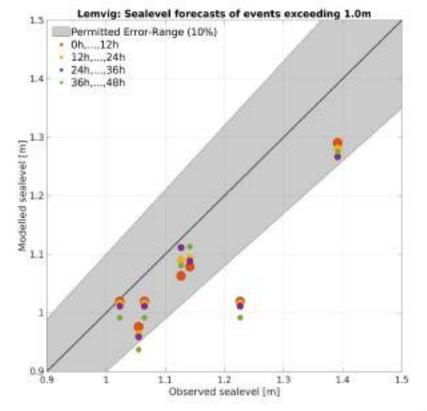
Example of event-based validation (KPIs)

General validation metrics

Class 1 metric: climatology and variability

	0,	
Name of product	Levels [m]	
T-climatology		
S-climatology		
UV-climatology		
SSH-climatology		
T-standard	5, 20, 30, 50, 100, 150, 200,	
deviation	300, 400, 500, 600, 700,	
S-standard	800, 900, 1000, 1200, 1400,	
deviation	2000, 3000, 4000	
UV-standard		
deviation		
SSH-standard		
deviation		

Class 3 metric: time se	ries
-------------------------	------


Name of product	Location	
BAL TS-1	Buoy station Platform code: xxx [Lat xxx°N; Lon xxx°W]	
BAL coastal SST-1	station Platform code: xxx [Lat xxx°N; Lon xxx°W]	
BAL SSH-1	Tide gauge station Platform code: xxx [Lat xxx°N; Lon xxx°W]	
NWS TS-1	Buoy station Platform code: xxx [Lat xxx°N; Lon xxx°W]	
NWS SSH-1	Tide gauge station Platform code: xxx [Lat xxx°N; Lon xxx°W]	
NWS SST-1	station Platform code: xxx [Lat xxx°N; Lon xxx°W]	
MED TS-1	Buoy station Platform code: xxx [Lat xxx°N; Lon xxx°W]	
MED coastal SST-1	station Platform code: xxx [Lat xxx°N; Lon xxx°W]	
MED SSH-1	Tide gauge station Platform code: xxx [Lat xxx°N; Lon xxx°W]	
GLO TS-1	Buoy station Platform code: xxx [Lat xxx°N; Lon xxx°W]	
GLO SSH-1	Tide gauge station Platform code: xxx [Lat xxx°N; Lon xxx°W]	

Class 2 metric: vertical sections of T and S

Name of product	Area	Latitude	Longitude
Section 1	Baltic	xxx°N	xxx°W –
Section 2	North Sea	xxx°N	xxx°W –

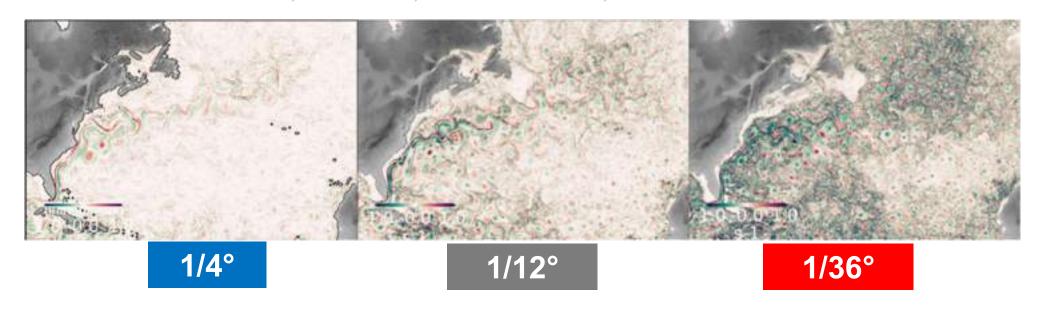
Class 4 metric: gridded error features (horizontal+vertical)

Name of product	Observations	
BAL-H-SST	Satellite	
BAL-V-TS	Mooring, ICES	
BAL-H-TS	ICES, Argo	
BAL-H-SSH	Satellite/tide dauge	
NWS-H-SST	Satellite	

Conclusions

- ➤ EDITO is contributing to the **development (T3.1) of several state-of-art models** (NEMO, SHYFEM, WW3, SCHISM, WAM, Delft3D, HBM, etc.)
- Ocean configurations (T3.2) and implementations of global and regional-coastal models for DTO in advanced stage - to be linked with the different FAs and WiSs (WP6 + WP7)
- > HPC and GPU optimization of models and assessment of performances (T3.3)
- Common and standardized approach for multi-model (general and event-based) validation (T3.4)

European Digital Twin Ocean



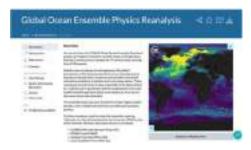
Thanks

WP3/example: The global 1/36° configuration based on NEMO OGCM

Clément Bricaud, Jérôme Chanut, Romain Bourdalle Badie, Mercator Ocean International

Plan:

- Global 1/36°: context and objectives
- Model development and validation
- Near real-time demonstrator


Plan:

- Global 1/36°: context and objectives
- Model development and validation
- Near real-time demonstrator

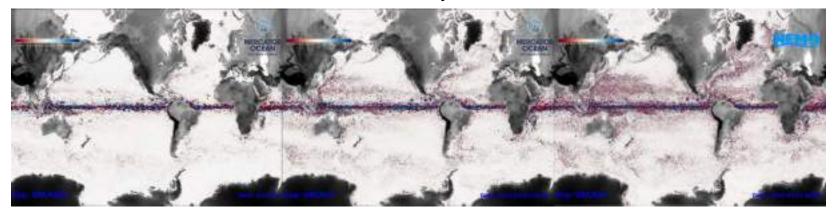
Global 1/36°: context and objectives

Present CMEMS/MOI global configurations:

Global 1/4° (20-25 km)

=>Reanalysis

=>Seasonal forecast



Global 1/12° (6-9 km)

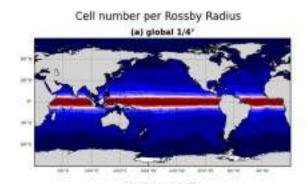
=>10-days Forecasting

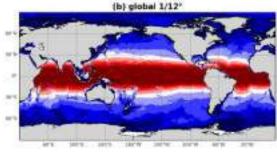
=>Reanalysis

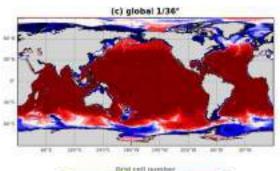
Global 1/36° (2-3 km) =>10-days Forecasting

Global 1/36°: context and objectives

Configuration name	Horizontal resolution (degree)	Horizontal resolution (km)	Zonal dimension	Meridional dimension	Baroclinic time-step (s)
ORCA025	1/4	20-25	1440	1205	1080.
ORCA12	1/12	6-9	4320	3615	360.
ORCA36	1/36	2-3	12960	10842	120.


- New global 1/36° configuration (ORCA36): model configuration for future Copernicus Marine Service and Mercator Ocean International global forecasting, based on NEMO OGCM.
- Developped during EU H2020 IMMERSE project
- Add finer scales processes and improve impact of fine scales processes over large scales processes




- 1/36° resolution: ~ 2 km
 Resolve the 1st Rossby radius at the global scale (away from continental shelves)
- Why including tides?
 Most of the energy transferred from external to **internal tides** resolved
 Broad impact on energy content from meso to sub-mesoscales
 Produce realistic internal tides fields and prepare upcoming observing systems (SWOT)
 Better modelling/understanding of deep mixing (impacts MOC)

Global 1/36°: context and objectives

Global 1/36°: Impact of resolution on waves resolution

Configuration	30°S/30°N	80°S / 30°S and 30°N / 80°N	80° S / 90° S and 80° N / 90° N
ORCA025	2-10	0-1	0
ORCA12	4-10	1-4	0-1
ORCA36	10	6-10	3-6

Number of grid cells to resolve the first Rosby deformation radius

A minimum of 2 grid cell per Rossby radius to resolve a wave on a discrete grid (Hallberg, 2013)

Global 1/4°: eddy-permitting

Global 1/12°: eddy-rich

Global 1/36°: eddy resolving

+ able to represent a part of the sub-mesoscale activity: sub-mesoscale permitting.

Plan:

- Global 1/36°: context and objectives
- Model development and validation
- Near real-time demonstrator

Model configuration and main settings

Configuration:

Horizontal grid: tripolar ORCA grid (12960 * 10850 points)

Vertical grid: 75 Z-levels, 1 meter at surface

Domain Include Antarctic Ice Shelves (explicit resolution)

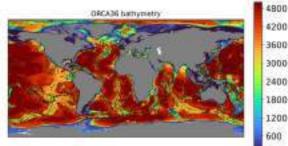
Bathymetry: GEBCO 2019 (GEBCO, 2019) and Bedmachine Antarctica 2

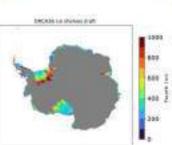
Antarctic ice caps: Bedmachine Antarctica 2

Code:

NEMO 4.2 release (including sea-ice SI3 model)

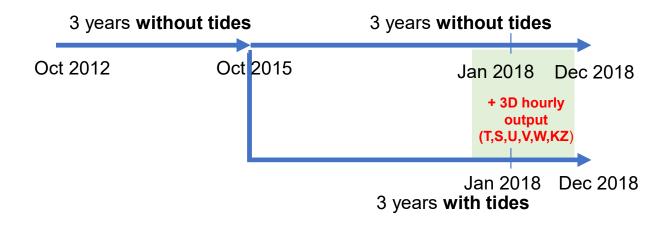
Numerical settings:

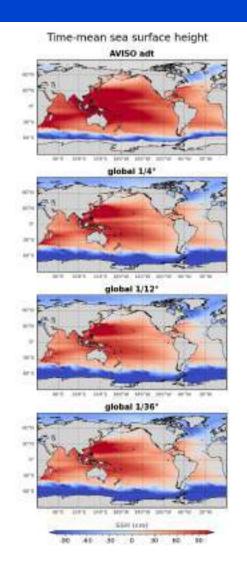

Non-linear free surface (Quasi-eulerian Coordinates formulation)

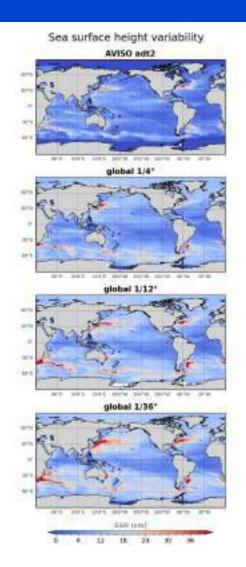

Forcing: ECMWF bulk formulae + Atmospheric pressure gradient.

Tracers transport: FCT advection scheme 4th order on horizontal and vertical + Explicite diffusion with iso-neutral operator

Dynamic: Advection: flux form - 3rd order UBS + No explicit viscosity


Vertical physic: Vertical mixing: k-epsilon vertical mixing (GLS) + adaptive-implicit vertical advection (Shchepetkin 2015)


2022: production of multi-year hincasts



- A portfolio of simulations at 1/4°, 1/12° and 1/36°. Without and with tidal forcing
- Atmospheric forcing from ECMWF/IFS real time system 8 km/1 hours
- Initial conditions: T&S from WOA13 climatology; sea-ice form CMEMS/Mercator ¼° reanalysis GLORYS2V4.
- Tidal forcing: O1, K1, M2, S2, N2 + Self Attraction Loading
- Run on ECMWF/ATOS computer: 25600 cores for NEMO, 100 XIOS servers (1 per node), 2 months per day
- 3D daily average + 2D hourly, the last years with also 3D hourly outputs

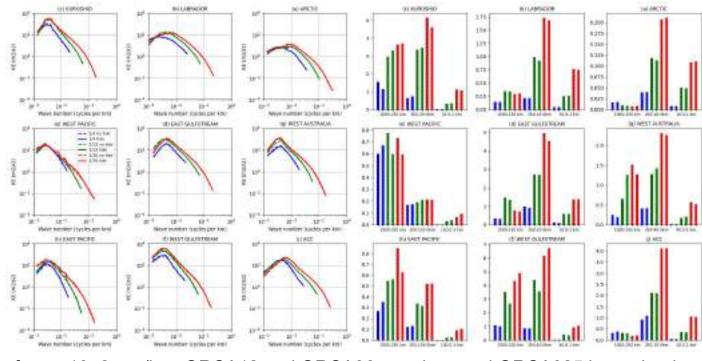
Sea Surface Height time-mean and variability

Period: 2016-2018

All the models are able to reproduce the circulation estimated by AVISO

Model SSH mean weaker in the open Ocean Model SSH variability globally greater than AVISO for all the models.

western boundary currents are more energetics in ORCA12 and ORCA36


Kuroshio and Gulf Stream pathways are more diffuse in ORCA36 better penetration in the open Ocean.

In ORCA12 and ORCA36: better location of the Gulf Stream separation retroflection is visible in ORCA12 and ORCA36.

North Atlantic current direction: In ORCA025: North-East direction ORCA12 and ORCA36: Eastward direction

Surface Kinetic energy spatial spectra

dashed lines: no tidal forcing solid lines: with tidal forcing

hashed boxes: no tidal forcing

3 bands:

the large scales : from 1000 to 250 km-

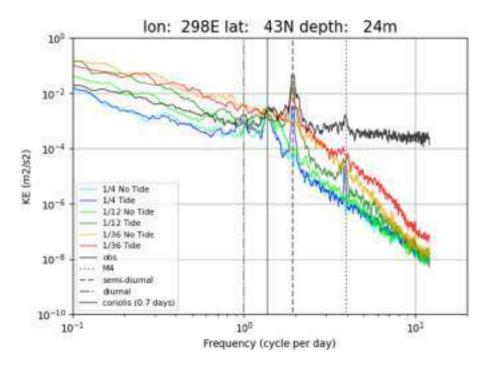
the mesoscales: from 250 km to the local first baroclinic Rossby radius of deformation)

the sub-mesoscales (from the first baroclinic Rossby radius of deformation to 1 km).

freq < 10-2 cyc/km, ORCA12 and ORCA36 are close and ORCA025 is weaker in most of the boxes.

freq > 10-2 cyc/km, the 3 configurations well differ.

freq > 10-1 cyc/km, only ORCA36 is able to produce SKE.


ORCA025 is not able to represent all the mesoscale

ORCA12 can not represent the finest mesoscale processes and can not simulate sub-mesoscale phenomena.

ORCA36 is able to represent all the mesoscale processes and can simulate the largest sub-mesoscale processes.

Kinetic energy time spectra

As in Luecke 2020: compare model spectra to observations (GMACMD database)

Non-tidal and tidal solutions at ½°, 1/12° and 1/36° resolutions are compared to observations.

- The KE content increases at all scales with the model resolution.
- Models with a higher resolution and tidal forcing are closer to observations.
- Impact of tidal forcing at coriolis, semi-diurnal and M4 frequencies: Tidal-forced models well reproduce the hint of energy, also present in the observations).
- Impact of tidal forcing at f > cyc/day no major impact on ORCA025 Change for ORCA12 and ORCA36
- Impact of tidal forcing at f > M4 more energetic for ORCA36

1/12° 1/36° 1/4°

Baroclinic modes resolved

Based on the theory for linear internal waves leads to resolving the Sturm-Liouville problem

Mode n = 0: barotropic mode

Modes n ≥ 1 : baroclinic modes

To determine the number of modes that can be resolved, comparison between:

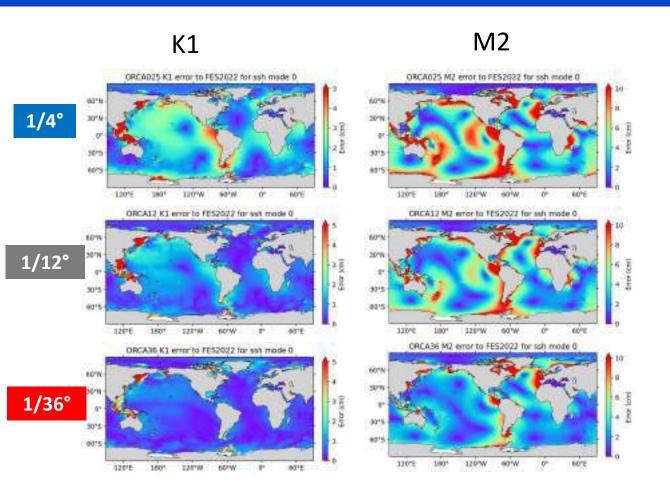
- the size of the horizontal resolution: $\Delta x = \max(dx, dy)$

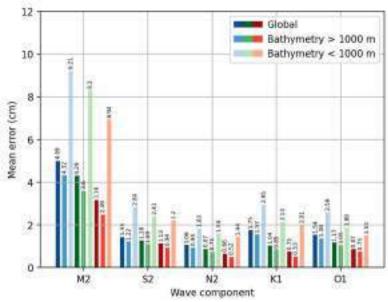
- the M2 wavelength of the mode: $\lambda_n = \frac{2\pi c_n}{\sqrt{\omega^2 - f^2}}$

We consider that the mode is resolved if $\lambda_n/\Delta x > 5$.

Grey/black. : $\lambda_n/\Delta x < 5$. => mode not resolved

Yellow/green/blue: $\lambda_n/\Delta x > 5$ => mode resolved


ORCA025 does not resolve any modes


ORCA12 resolves 2 baroclinic modes

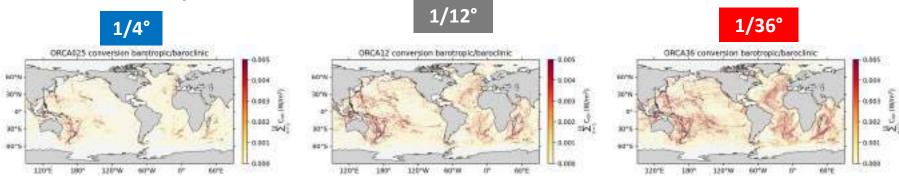
ORCA36 resolves 7 baroclinic modes.

Barotropic SSH: comparison to altimetry

Compare model to FES2022 Model = SSH mode 0

M2 Baroclinic SSH: comparison to altimetry

Internal tide extraction:


- Altimetry: SLA FES , then 50-400 km filtering
- Model: sum of mode 1-10

M2: large increase of variance with resolution

Baroclinic to barotropic conversion

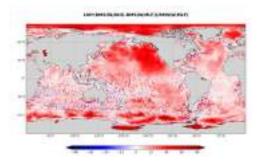
resolution	M2	K1	01	N2	Q1	S2	Total
1/36°	633	66	40	26	0	97	862
1/12°	421	57	35	17	0	64	594
1/4°	74	33	25	3	0	11	146

Barotropic to baroclinic conversion (GW)

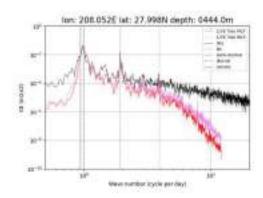
Model improvements

2023:

 Use the new 2 level time-steping scheme based on Runge Kuta 3rd order scheme


Replace the former scheme based on a leap-frog + asselin filter (= Modified Leap Frog = MLF)

RK3 costs 50% more than MLF per time step : But: RK3 has an extended stability: Time step value multiplied by 2.5


=> RK3 + rdt=300s: 30 % gain compared to MLF + rdt=120s

Vertical velocities RMS

Ratio: 100*(RK3-MLF)/MLF

3 months KE time PSP

- => more variability in W with RK3 => less dissipative compare to MLF
- => more energy at mesoscale and fine scales
- => more energy at sub diurnal frequencies

Model outputs: transfer on the EU public DTO platform

One year of ORCA36 (hourly 2D and daily 3D): 90 Tb

One year of ORCA36 (hourly 2D and daily 3D + hourly 3D): 790 Tb...

a first dataset will be available in 2024:

Sea Surface Heigh, tempereture and horizontal velocities

(2.3Tb per variable per year)

Model improvements

2023:

Task 3.1 Improvement of next generation ocean models for DTO Task 3.4 Validation/calibration of models with satellite and in situ observations

- Use the new 2 level time-steping scheme based on Runge Kuta 3rd order scheme
- · evaluation of resolution increase
- · evaluation of tides impact and IW

2024:

Task 3.1 Improvement of next generation ocean models for DTO

Switch to the last release of NEMO

Task 3.2 Ocean configurations for DTO models

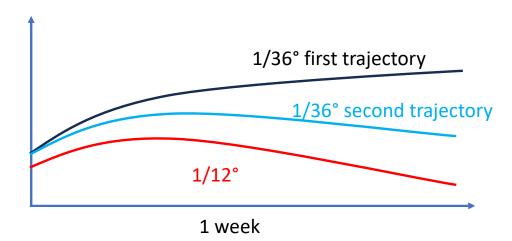
- Test NEMO/ORCA36 on EuroHPC computers (especially BSC and CINECA)
- Test NEMO/ORCA36 on CPU/GPU hybrid nodes (porting with PSYCLONE)
- Test and validation of ORCA36 with mixed-precision)

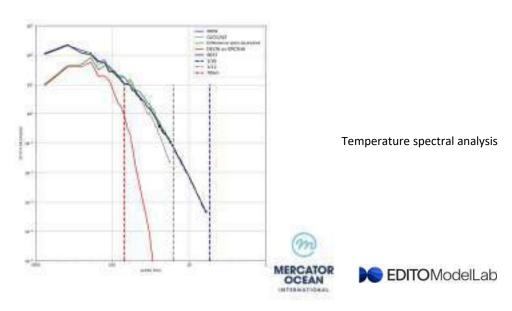
Plan:

- Global 1/36°: context and objectives
- Model development and validation
- Near real-time demonstrator

Near real-time demonstrator

Near real-time demonstrator based on spectral nudging GLO36V1: system design

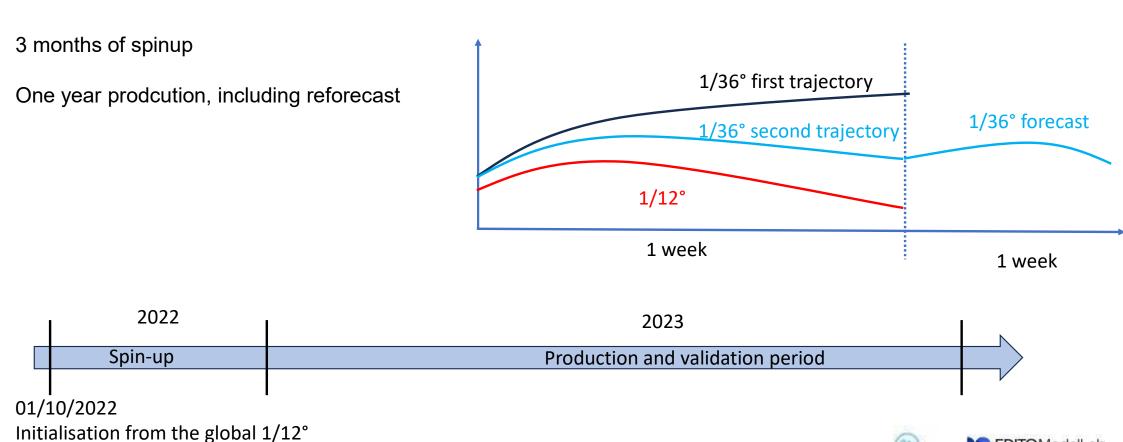

- Model:
- global 1/36°, based on ORCA grid and NEMO 4.2
- Domain including Include Antarctic Ice Shelves (explicit resolution)
- Forced by ECMWF/IFS sytem (8 km resolution, 1 hour frequency)
- Tidal forcing: O1, K1, M2, S2, N2 + Self Attraction Loading
- Initial condition: T,S,U,V, sea ice from CMEMS/MOI global 1/12° real-time system


• Nudging:

- Toward CMEMS/MOI global 1/12° real-time system (for Temperature ,Salinity ,horizontal velocities and sea ice concentration).
- After a first trajectory: the increment is based on the weekly difference between the global 1/36° and global 1/12° systems, low-pass filtered (70 km) and tapered along the coast.
- During the second trajectory: the increment is injected in NEMO with NEMO IAU.

• Control:

- Mercator Observation operator (NOOBS, written in python) is implemented.



Near real-time demonstrator

real time system

Near real-time demonstrator based on spectral nudging GLO36V1: scenario

EDITOModelLab

Near real-time demonstrator

2023:

Task 3.1 Improvement of next generation ocean models for DTO

Implementation of spectral nudging in global 1/36°

Task 3.4 Validation/calibration of models with satellite and in situ observations

• Implementation of offline obervations operator and comparison with the present MOI/CMEMS global 1/12° NRT sytem

Plans for the second year (2024)

Task 3.1 Improvement of next generation ocean models for DTO

Finalize tests of spectral nudging

Task 4.4 Simulations and quantification of the benefit of DTO models

Produce the one year hindcast and forecast

Task 3.4 Validation/calibration of models with satellite and in situ observations

Validation of the forecasts

Task 4.4 Simulations and quantification of the benefit of DTO models

• Push model outputs on the Marine Data Store, to be available on EDITO-infra platform a first data dataset will be pushed on the Marine Data Store and referenced on the EDITO-INFRA catalogue Provide informations (sytem description and quality) on a public github?

Conclusion and perspectives

• A global 1/36° configuration exists, implemented in NEMO 4.2

A multi year hindcast has been performed, with its twin global ¼° and 1/12° configurations Without and with tidal forcing

Increasing resolution leads to an improvement in term energy of energy

Improved representation of barotropic tide thanks to resolution (and Antarctic cavities in the domain) 7 baroclinic modes resolved for ORCA36, 2 baroclinic modes resolved for ORCA12

Some diagnostics has been designed to highlight benefices of resolutions and tidal forcing

• a NRT demonstrator has been designed, developed and tested in 2023.

It is designed and implemented

It will be run in 2024.

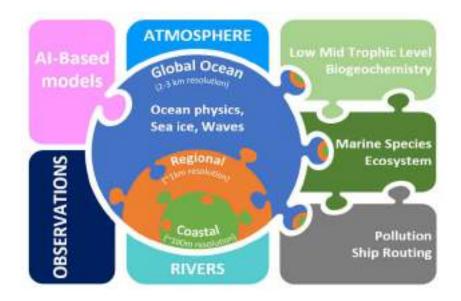
Model output will be accessible through EDITO-INFRA

General Assembly 16-18 January 2024 – Lecce, Italy

BACK AT 2:30 PM

Achievements and next steps

Core Model Suite and Virtual Ocean Model Lab (WP4 -WP5) Moderator: F Cultrera (Cineca), Y Drillet (MOi)



WP4 | Objectives

Lead MOi, co lead DELTARES

Objectives (linked to EDITO-Model Lab objectives No 1, 2, 3 and 4): Design and integrate the model components to **build EDITO core model suite**, based on the next generation of models that will be developed, maintained and made available in EDITO-Model Lab. The EDITO core model suite that will be integrated in this WP4 will be based on available, optimised and validated models and on DDEs combined with classical model approaches to build **hybrid models**, other **models** and **tools** (as validation tools) will be integrated in the core model suite.

WP4 | Structure

Done

Started

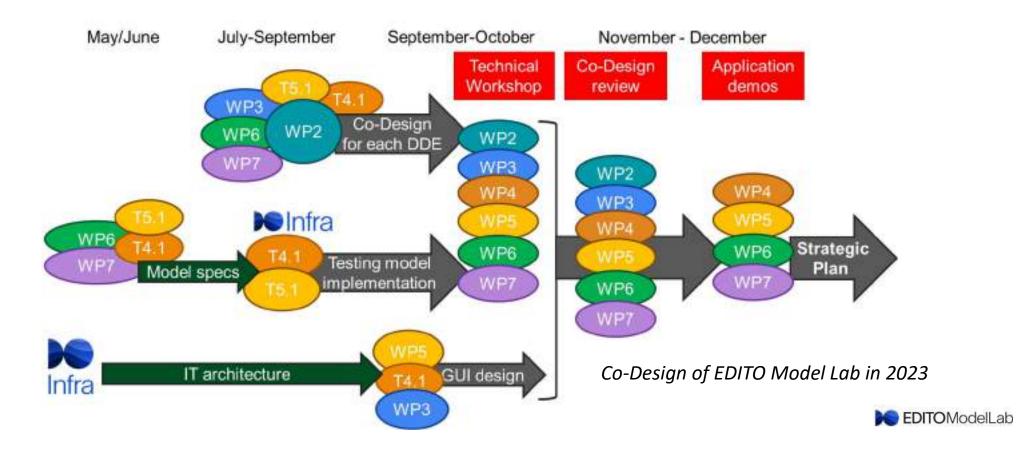
0

▶ EDITOModelLab

WP4 | EDITO core model suite (achievements)

Task 4.1

- → Joint task with T5.1, tight collaboration with other WPs (2,3,5,6,7)
- Updated TRL objectives for model components (WP3) and Emulators (WP2)
- Defined planning of co-design phase (Year 1)
- Summary of data (input/output) from WP6 & 7 included in DMP (D1.1)
- Codesign phase achieved Milestone 2-Workshop for co-design of the VOML (Co-Design Technical meeting in Toulouse, 19-20 October 2023) (WP5) Milestone7-CO-DESIGN (Co-Design Review in Delft, 22-23 November 2023) (WP1)
- Contribution to Technical Architecture Document deliverable (D1.2)


Data summary table – extract from DMP (D1.1)

Related WP, - Focus Application (FA), What-If Scenario (WIS)	Planned usage/ Required Inputs	Planned usage/ Required Outputs	Planned physical processes	Core models / Secondary models	Stakeholders	Description of data	Source	Format	Storage location/ Protocole
NEAR Real-T	ime data								
for biodiversity	 water conditions & 3) nutrient/oxygen/carbon concentration (E- hype model / ICCEMO measurements, used in OSPAR, or National governmental data) Specific for FA 1: 	Water quality (nutrients, oxygen, pH or H+), pelagic and benthic functionals types (e.g.	In general: - thydrodynamics - Blogeochemistry - Ecology - Sediment uptake - Pedagic/benthic - Ecological processes: None, the project will model the physical habitat factors	Delf3D-FM / Deco Impact	users	Scale: Regional/Coastal Demo sites: North Sea: Dutch Continental Shelf Model -MPA in Puglia (CMCC), Italy	EDITO Model Lab	Output file formats: NetCDF (unstructured) Output file size estimation: For daily timeseries and weekly maps	Marine Datalake

WP4 achievements: task4.1 co-designing the integration path

In 2023 task4.1 was completed. Over iterative co-design steps, components were developed and showcased, resulting in a clear vision on how to integrate them in 2024.

WP 4 | EDITO core model suite (achievements)

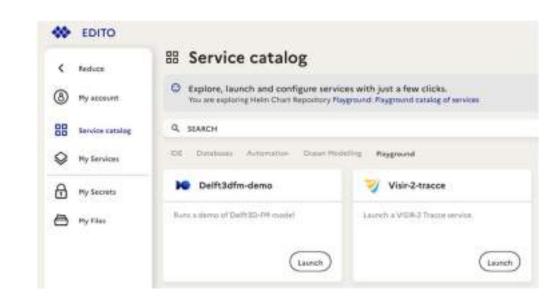
Tasks 4.2 and 4.3

- → Preliminary testings and integrations on the platform
 - Active collaboration with EDITO-infra project team
 - Technical tests with WP5 (VOML) and other WPs for testing systems/workflow components
- Progress on interfaces with the EDITO-Infra virtual environment (Datalab)
 Testing integration of software (code repositories and containerized images) as « services » and «process » in EDITO Infra environment
- Interfacing with HPC ressources

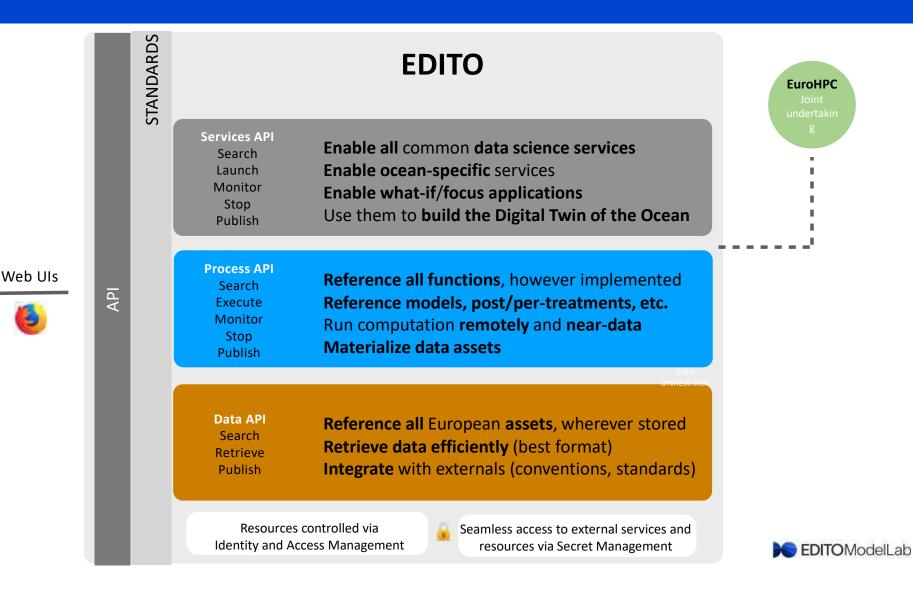
Connexion through Autosubmit to BSC MN4 verified, ongoing with CINECA

WP4 | Towards Beta version of Core Model Suite (MS8)

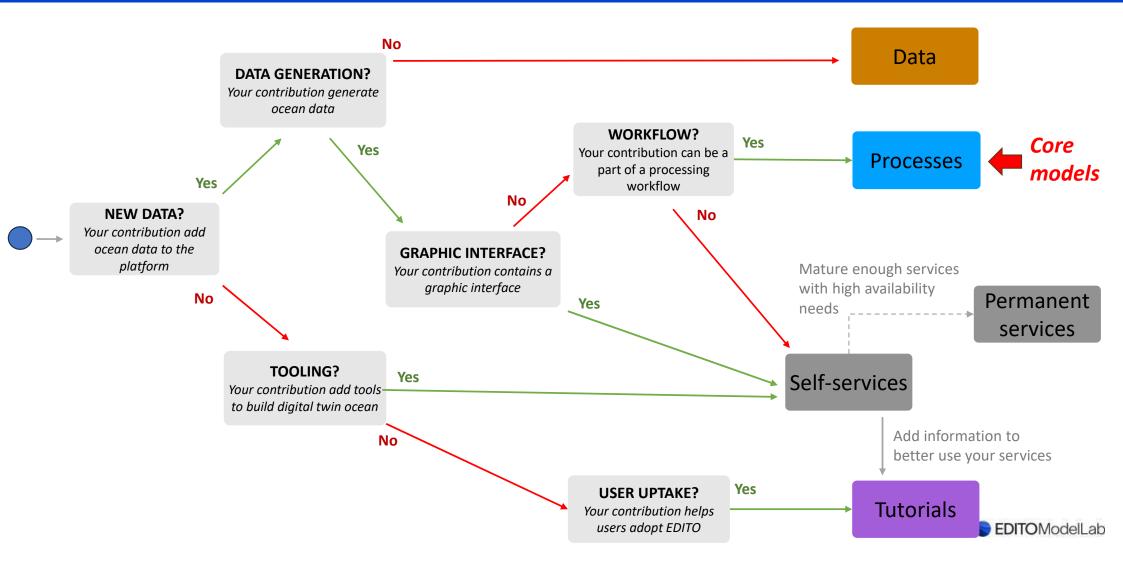
Tasks 4.2 and 4.3

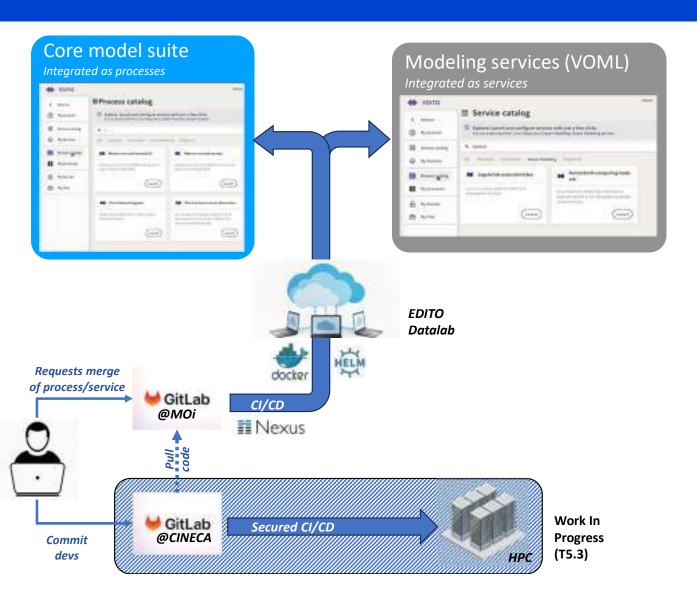

- First attempts to deploy software on platform led to a refined integration path
- MA-8 <u>due Month 14</u> (February)

Test Integration (deploy and run) of a 1st set of models (NEMO, Deltf3d-fm and VISIR-2) on cloud platform
Step-wise demonstration of end-to-end application workflows led to significant progress on compatibility and interoperability


Fast hands-on from developers on platform and high level of standardization (clean soft repos, containers), allowed rapid

deployement and demonstration within platform environment


Datalab snapshot on "Playground" section


EDITO interoperability design criteria

How to contribute to EDITO?

WP4 | Towards Beta version of Core Model Suite (MS8)

- Model suite will be presented as part of Process Catalog (dedicated tab)
- Models are integrated as process (within helm charts) and automatically deployed on the plaftorm by a CI fron Moi's gitlab
- For testing/dev purpose, developers can directly associate EDITO code repo to Datalab IDEs (eg. Vscode/JupyterHub)
- Whether a partner would need support for hosting code or images, please contact MOi.

WP4 | EDITO core model suite (goals)

Task 4.1

Strategic Plan – started, delivery extended to February 2024

Task 4.2

- Milestone 8-Beta version of Core Model Suite due Month 14:
 - O Identify best candidates for the beta-version,
 - O Make codes and configurations available from platform.
- O D4.1 Core model suite code (M24)

Task 4.3

Start integration of code model suite (from beta version)

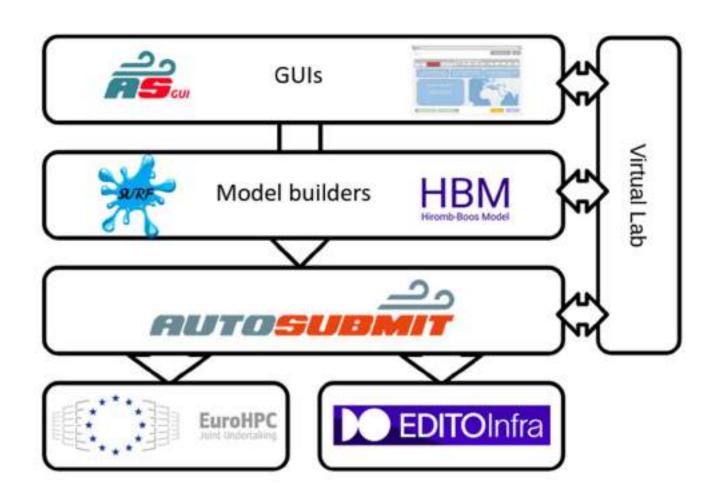
Some strategic challenges ahead:

- HPC integrations to start,
- cross-platform data management,
- describe and document code model suite,
- interoperability with UIs,
- interoperability with WP6/7 applications.

WP4 Next steps: integration

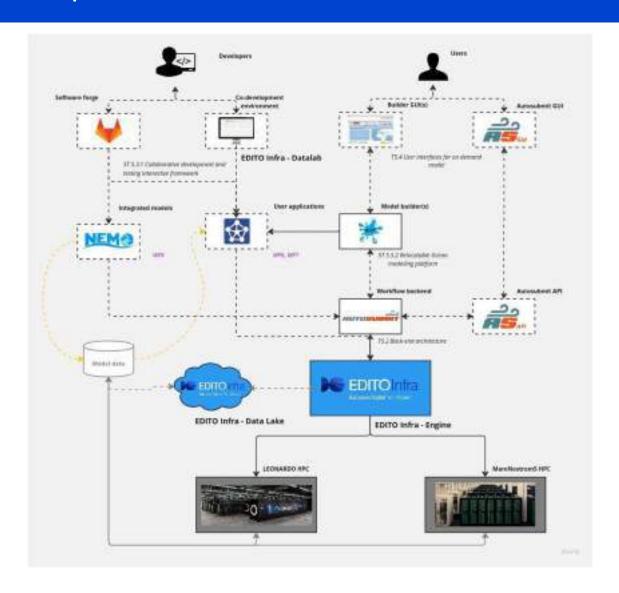
Integration will be achieved on multiple levels in 2024:

- 1. Components to be *complementary to and compatible with each other*. Achieved by co-operation among the partners of EDITO Model Lab (models and AI emulators) and by <u>standardization</u> of data and model output formats, interfaces, APIs, and protocols.
- 2. Components to be integrated on the EDITO platform and to be able to run seamlessly on HPC and cloud. Achieved by co-operation between EDITO Infra and EDITO Model Lab, and by bridging the gap between IT infrastructure development and scientific application of ocean models.
- 3. EDITO Platform and tools to become *relevant for the target community*. Achieved by engagement with, training of and collaboration with intermediate (Focus Applications) as well as end-users (What-if Scenarios) outside of the EDITO projects.



WP5 | Structure

T5.1 Co-design of virtual environment (Lead: MOi Partners: Deltares, CINECA, BSC, CMCC, UniBO)	<u>Co-design</u>
T5.2 Back-end architecture (Lead: BSC Partners: CINECA, CMCC, MOi)	Back-end
T5.3 Virtual Ocean Model Lab for co-development (Lead: CINECA Partners: BSC, CMCC, UniBO, DMI, MOi)	<u>VOML</u>
ST 5.3.1 Collaborative development and testing interactive framework ST 5.3.2 Relocatable Ocean modelling platform	
T5.4 User interfaces for on demand model (Lead: CMCC Partners: BSC, CINECA, DMI, UniBO, Hereon)	<u>User interfaces</u>
ST 5.4.1 Front-End Application Model ST 5.4.2 SURF-GUI ST 5.4.3 DMI-GUI	
T5.5 Testing and validation of the Virtual Ocean Model Lab (Lead: SOCIB Partners: Deltares, MOi, BSC, CINECA, Hereon)	Testing and validation



WP5 | WP5 & VOML architecture

WP5 | VOML architecture

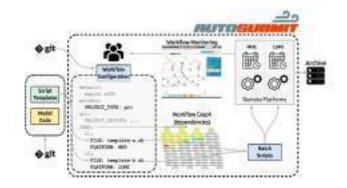
Open the diagram in Miro

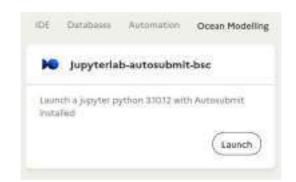
<u>Deliverable: D5.1.EDITO Model Lab</u> <u>technical architecture</u>

News: What is the virtual ocean model lab?

WP5 | Integration progress

- HPC backend → As soon as HPCs are available
- EDITO Infra backend → Integrated
- Backend Model builders → Ongoing
- Backend GUI → Ongoing
- Model builders GUI → Ongoing
- GUI GUI → To be explored

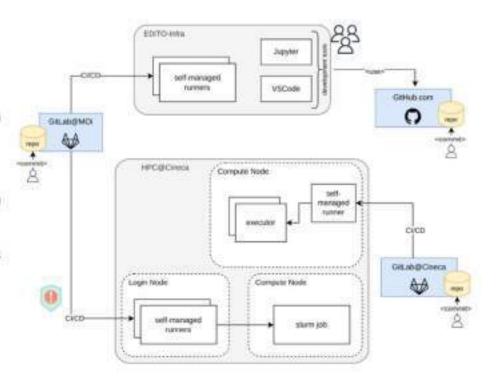

Task 5.2 Back-end architecture (Lead: BSC) [M1-M24]


Autosubmit 4 deployed at EDITO-Infra

- We created a **Docker image** for **Autosubmit4** to be deployed at EDITO-Infra
- Autosubmit4 was integrated with the help of EDITO-Infra team
- We held a demonstration of cloud and HPC workflows orchestrated from cloud in the EDITO VOML review technical meeting

Autosubmit API interoperable with Autosubmit 4

- Autosubmit API provides information from Autosubmit workflows by answering user requests
- Autosubmit API, compatible with Autosubmit3, was upgraded to be interoperable with Autosubmit4
- We have a version ready to be deployed at EDITO-Infra


Task 5.3 VOML for co-development (Lead: CINECA) [M1-M24]

Collaborative development and testing interactive framework

- Analysis of the state-of the-art of reusable running instances of GitLab including the one available for EDITO-Infra and the other from HPC side
- Study for a solution to enable CI/CD runners for automatic integration and deployment in different compute infra
- IDE tools available on EDITO Infra, such as VSCode, Jupyter Notebooks

Relocatable Ocean modelling platform

- Code review and re-engineering to Python
- Containerization of SURF platform. In progress using Docker and Singularity

Task 5.4 User interfaces for on demand model (Lead: CMCC) [M1-M24]

Autosubmit-GUI

• Improvement in the **GUI portability**. Quick and easy installation and test.

SURF-GUI

- A list of Software Requirements Specification have been prepared
- Creation of the SURF-GUI wireframe completed

HBM-GUI

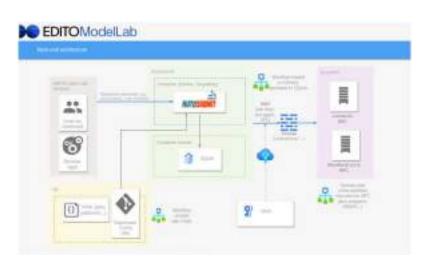
Started the development of the HBM GUI using Python 3

Vanilla demo: https://autosubmitgui.bsc.es/presentation/

Task 5.5 Testing and validation of VOML (Lead: SOCIB). [M18-M36]

Definition of workplan for testing and validation

• **Project scientist hired**, with dedication to this task

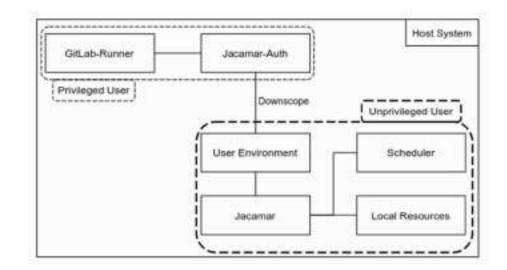

Task 5.2 Back-end architecture (Lead: BSC) [M1-M24]

Refine the Autosubmit 4 deployment at EDITO-Infra

- Work on Autosubmit's DDBB persistency and shared usage
- Work with EDITO-Infra team on optimizing the handling of the HPC security

Integrate Autosubmit API in EDITO-Infra

- Create a Docker container for Autosubmit API
- Deploy and test Autosubmit API in EDITO-Infra
- Develop write-mode endpoints in Autosubmit API implementing the necessary logic in Autosubmit and Autosubmit API


Task 5.3 VOML for co-development (Lead: CINECA) [M1-M24]

Collaborative development and testing interactive framework

- Instantiation of Gitlab Runners using Jacamar CI on HPC infra
- Authorization and downscoping
- Enabling CI/CD pipelines on EDITO infra and HPC

Relocatable Ocean modelling platform

- Porting of the runexp.py script as Autosubmit pipeline configuration
- Enabling CI/CD pipeline on SURF components
- **Deployment** of **different component** in the proper compute infra (both cloud and HPC)

Task 5.4 User interfaces for on demand model (Lead: CMCC) [M1-M24]

Autosubmit GUI

- Upgrade Autosubmit GUI to use the new write-mode endpoints in Autosubmit API.
- Deploy Autosubmit GUI in EDITO-Infra.

SURF-GUI

- Create the SURF-GUI Mockup which will include more visual and interactive elements
- Integrate the Autosubmit API/GUI within the SURF-GUI
- Develop the SURF-GUI prototype
- Deploy the SURF-GUI prototype in the EDITO-Infra

Task 5.5 Testing and validation of VOML (Lead: SOCIB). [M18-M36]

Definition of workplan for testing and validation

- Compilation of user database
- Define calendar for testing and validation of VOML
- Internal testing and validation
- Development of tutorials to be shared with external users

WP4-WP5 | Examples (live demos)

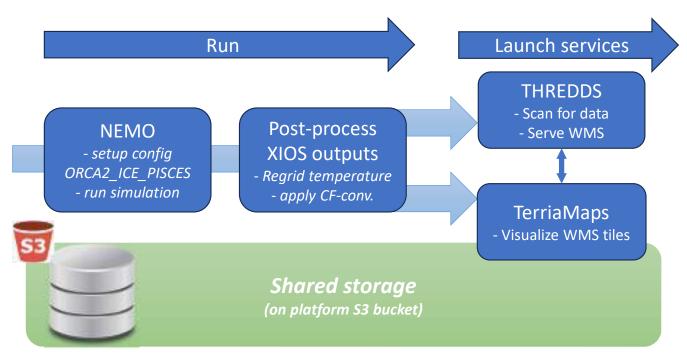
WP4 & WP5 Examples

- Autosubmit integration in EDITO (live demo)
- NEMO demonstration in EDITO (live demo)

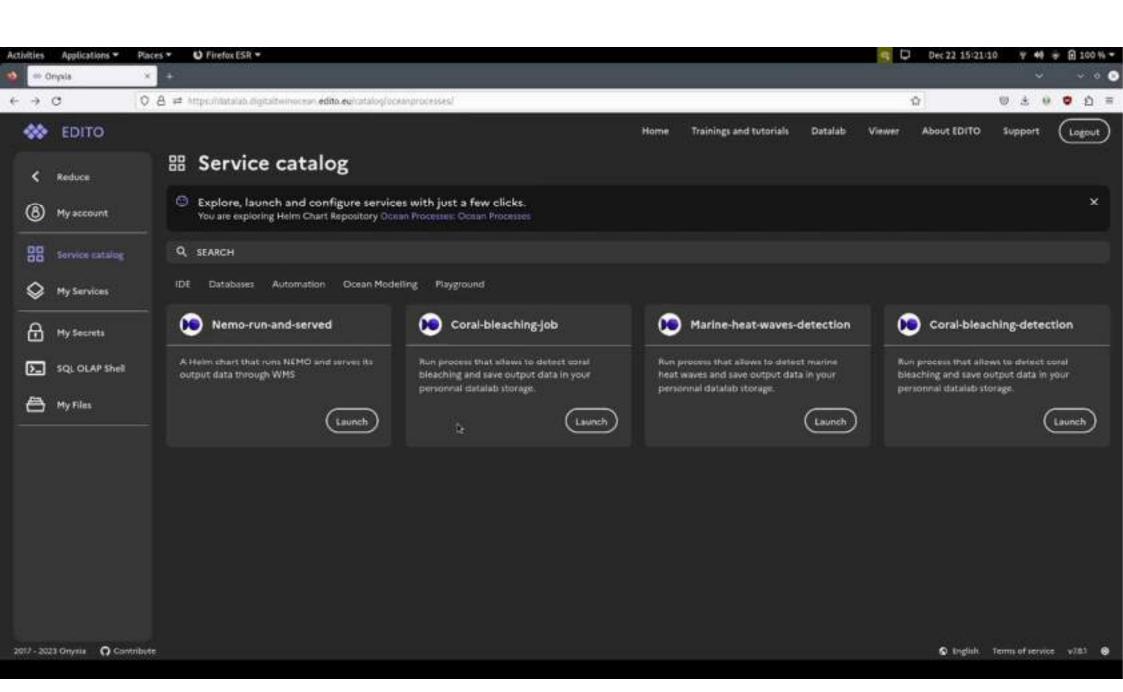
WP4-WP5 | Example #2 NEMO Demonstration

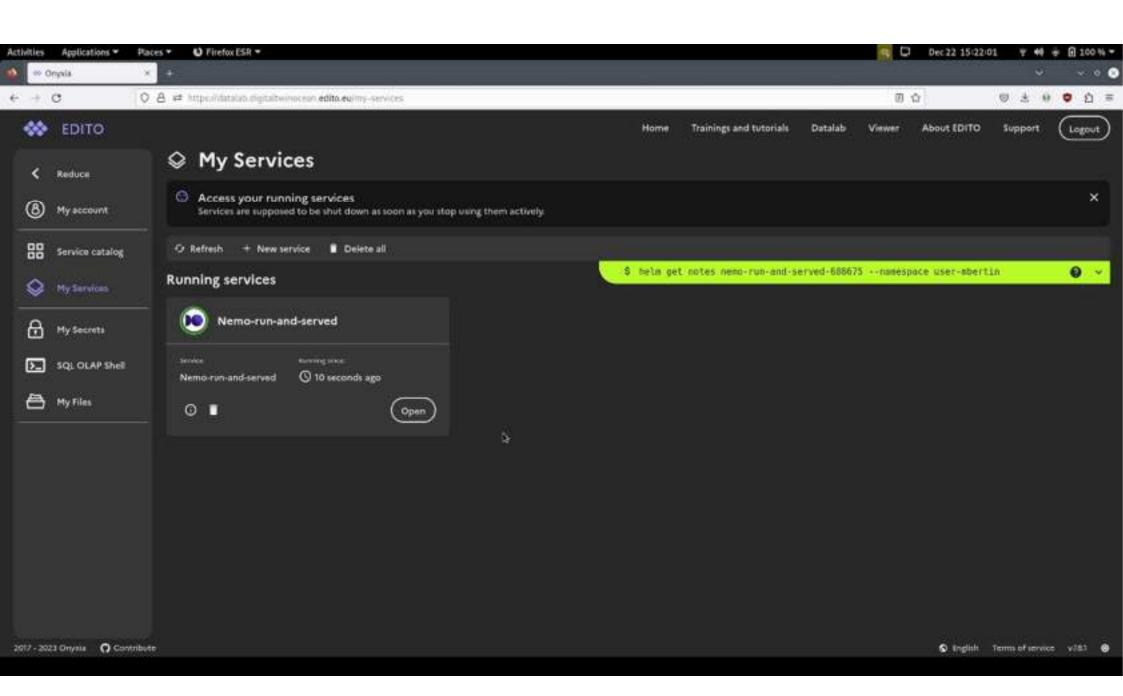
Run NEMO reference simulation <u>ORCA2_ICE_PISCES</u>

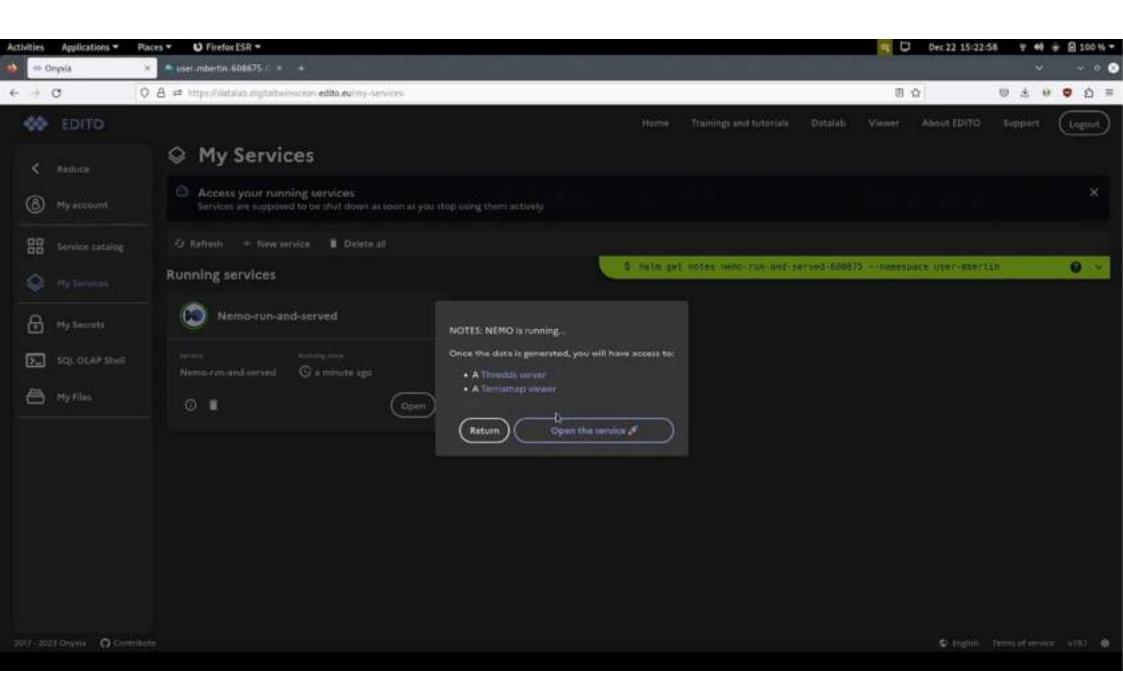
- global ocean with a 2°x2° ORCA2 grid and 31 vertical levels (z-coordinates, 10 levels in top 100m).
- NEMO-OCE, NEMO-SI3, NEMO-TOP + XIOS
- Climatological forcings


Integration path:

- 1. Gitlab repository, clonable from platform's VSCode IDE (self-service)
- 2. Merge request to integrate docker images of scripts as processes on platform (helm charts)


WP4 & WP5 | Example #2 NEMO Demonstration





Demo is accessible from EDITO Tutorials page https://tutorials.digitaltwinocean.edito.eu/training
Direct link to article on mercator's gitlab

WP4 & WP5 | Example #2 NEMO Demonstration

What's next?

NEMO:

- optimization of container image, split into several images, integrate to a more complex workflow (several simulations in parallel "a la WiS")
- Integrate into Autosubmit, run on HPC
- Develop a dedicated web UI for setting experiment parameters

THREDDS / TerriaMaps:

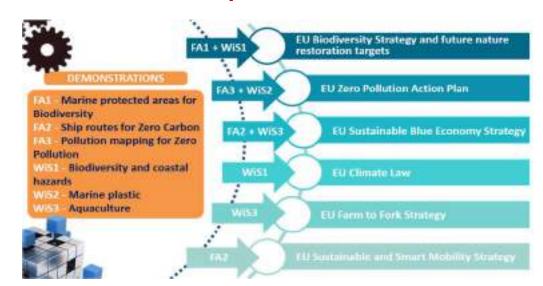
- Pre-fetch TDS services from TerriaMaps
- Possibly convert to zarr to avoid TDS stage
- Refine visualization parameters

General Assembly 16-18 January 2024 – Lecce, Italy

BACK AT 4:25 PM

Achievements and next steps

Focus applications and What-if-Scenarios (WP6 – WP7) Moderator: G El Serafy (Deltares), J Staneva (Hereon)



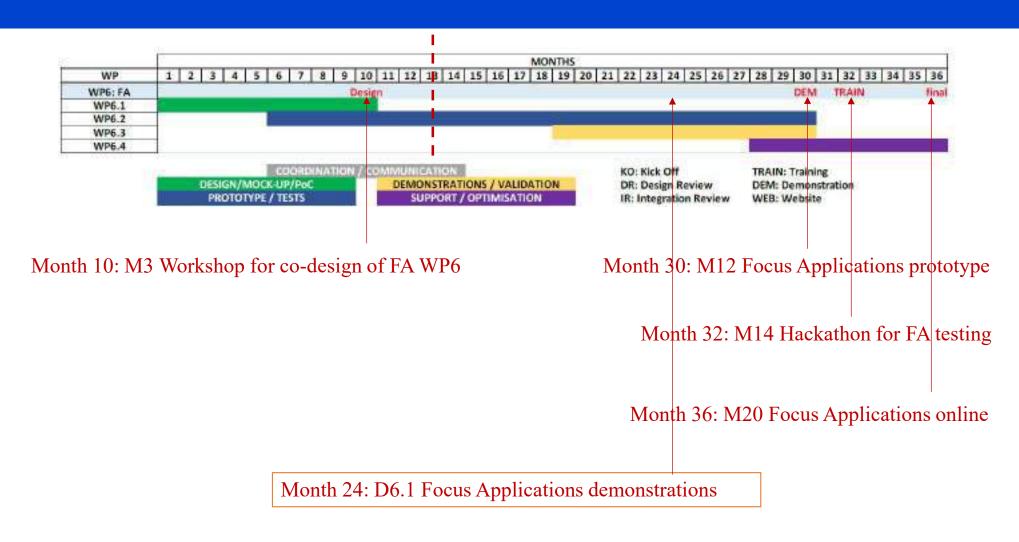
Target

KER #5 Focus Applications and What-if Scenarios to demonstrate the benefit of the developed model components for the Mission priorities.

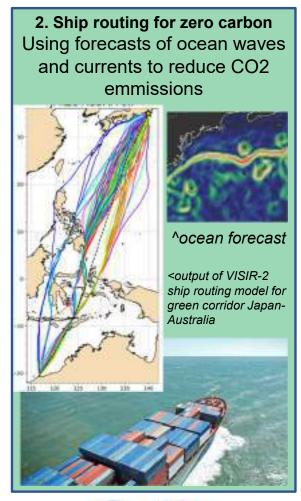
- → KPI: 6 demonstrators will be developed using EDITO models and tools (reaching TRL8)
- → **KPI** Capacity to explore application and scenario in less than 30min.
- → illustrate capabilities, functionalities, performances and the usefulness of the core model suite

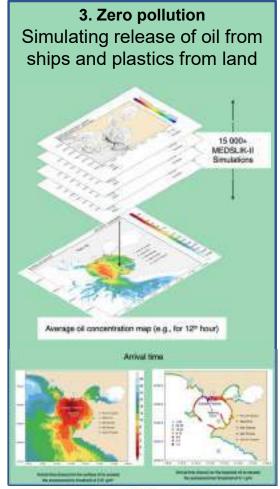
EDITOMODE Lab

Focus applications will include on demand simulation production (specific region, specific variable for a dedicated application)


What-if scenarios will answer to (policy) questions using existing simulations and dedicated impact simulations based on pre-defined scenarios

WP6 Timeline

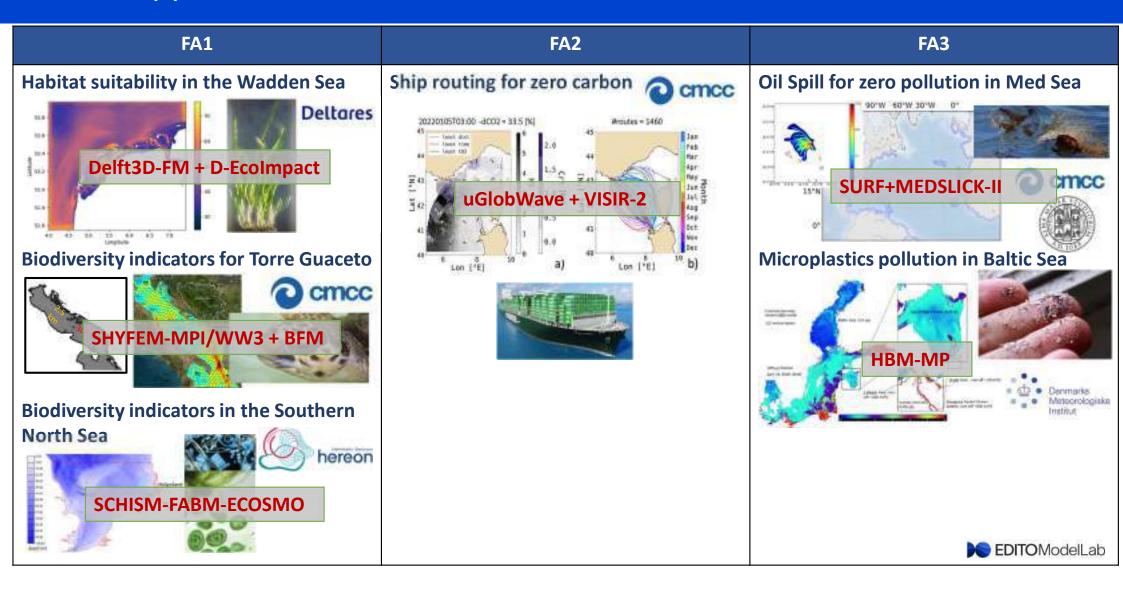




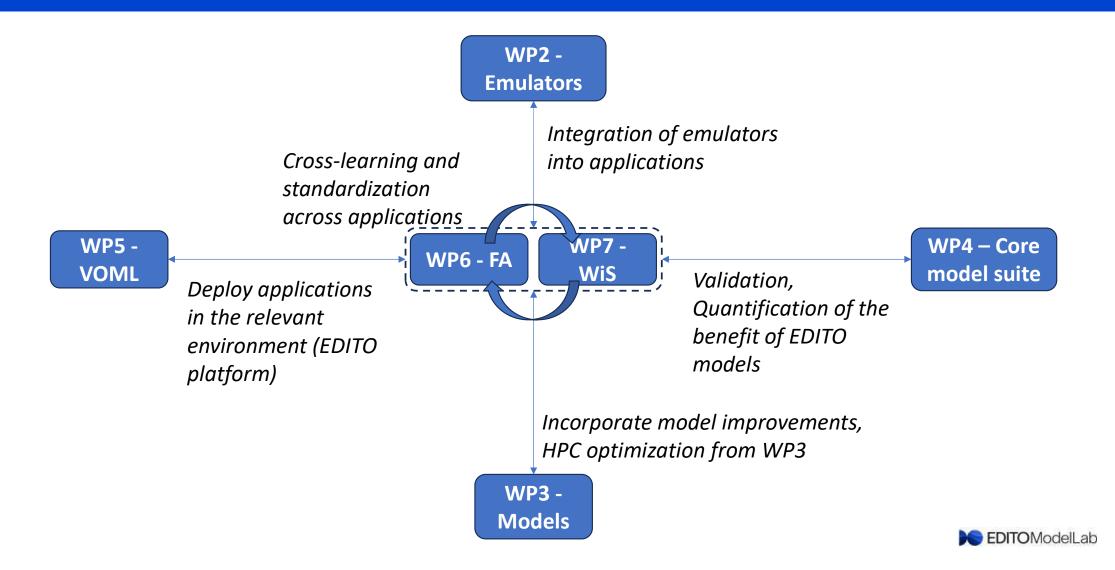
Focus Applications

1. Marine Protected Areas & biodiversity
Habitat suitability and biodiversity indicators

The Wadden Sea World Heritage Site



Focus Applications


Focus Application «products»

FA1	FA2	FA3		
Habitat suitability in the Wadden Sea	Ship routing for zero carbon	Oil Spill for zero pollution in Med Sea		
"Spatial habitat suitability index for predefined or user specified species."	"Least distance, time and CO2 emission routes. Pre-computed routes with fixed departures or on-demand routes with any departure location."	"Coastal oil spill hazard index for operational spills. Cumulative oil spill trajectories for operational events. Oil Fate on the surface, Oil mass in the coast, Simulation Mass Balance."		
Biodiversity indicators for Torre Guaceto				
"Environmental Indicators based on high resolution circulation,				
waves and biogeochemistry models."		Microplastics pollution in Baltic Sea		
Biodiversity indicators in the Southern North Sea		"Fate and pathways of land microplastics in the Baltic Sea. Spatiotemporal distribution, residence pattern, MP budget for user specified area."		
"Biodiversity indicators from the dynamic physical-biological simulations."		▶ EDITOModelLab		

Achievements

- √ 6 technical FA teams (from 5 institutes) are up and running
- ✓ Several FA coordination events took place (co-design meetings [June] and first demos in December 2023)
- ✓ FA outputs/products identified but to be refined
- √ Technical workflow components identified for all FAs
- ✓ Data and compute infrastructure requirements identified
- ✓ Basic user interfaces identified in most cases. Some already exist
- ✓ Workflow components tested locally for most applications
- ✓ Workflow components tested in EDITO-infra for some applications

Future plans - INTEGRATION

Future plans – List of issues

Integration within Focus Applications and other WPs

Users should be guided upon an entry to the platform (Which focus application to use for what area and for what variables and for which scientific questions?)

Work towards presenting the application homogenously (presentation format)

Common repository or list of repositories (e.g. Wiki, Confluence) for collaboration (idea: dedicated GitHub for the project)

Expand / update technical table of technical requirements (link to temporary folder)

Make final inventory of required input data that is not accessible yet on EDITO platform (e.g. FES)

Discussion about unstructured data formats (e.g. u-grid)

FAs that need **native HPC installation** should collaborate and contact BSC + MOi

FA1: Shared routines (by Hereon+CMCC) to compute biodiversity indicators and to compute habitat suitability (D-EcoImpact by Deltares). The compatibility of output from Schism (HEREON), SHYFEM and NEMO (CMCC, University of Bologna) can be tested with D-EcoImpact

Future plans - INTEGRATION

FA1: Coastal biogeochemical models (WP3) + turbidity emulator (WP2)+ algorithms to develop biodiversity indices + D-EcoImpact (WP3)

FA2: Global hydrodynamics & wave model + global sea surface velocity emulator (WP2) + ship routing model (WP3)

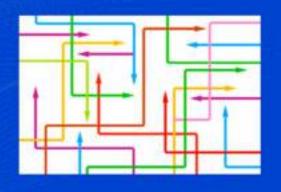
FA3: Regional hydrodynamic model (WP3) + oil spill model / plastic dispersion model (WP3)

Future plans - External

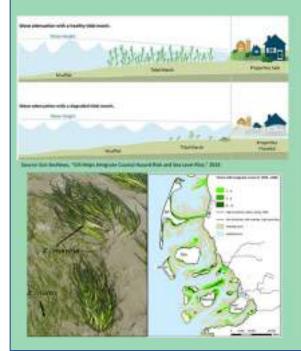
Technical exchange with ILIAD:

WP7 Demonstration and impact assessment of Iliad pilots → WP6-7 EDITO Model Lab Focus Applications and What-if scenarios.

- Demonstrations in conferences to engage intermediate users:
 - EGU 2024 (WP6 abstract submitted)
 - Ocean Decade Conference 2024 (WP6-7 abstract submitted)
 - Digital Ocean Forum 2024 (demos to be submitted)

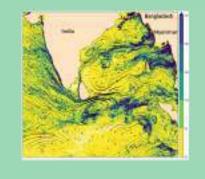


What-IF Scenarios



What-IF Scenarios

1. Nature Based Solutions for biodiversity and coastal hazards


Impact of extreme events on ecosystems protection and mitigation

2. Marine plastic for Zero pollution

Effects of plastic pollution levels reductions in LOC in the marine environment

3. Aquaculture for Zero carbon

Marine aquaculture offers opportunities for emissions reduction and the potential for carbon sequestration.

WP6/WP7: Demonstrations

6 demonstrators will be develop based on models and tools that will be available

- → Focus applications will include on demand simulations production (specific region, specific variable for a dedicated application)
- → Whatif scenario will answer to questions using existing simulations and dedicated impact simulation to provide information on the impact base on a scenario.

KER #5 FA and WiS to demonstrate the benefit of the developed model components for the Mission priority. Link with Obj 5, 6 Contribution to EO 3, 5, 6, 8	3 FA + 3 WiS to illustrate capabilities, functionalities, performances and the usefulness of the core model suite and to answer, explain and quantify change and impact for protecting and restoring ecosystems and biodiversity, for zero pollution, and for decarbonisation and net greenhouse gas emissions reduction. Capacity to explore application and scenario in less than 30min.	Consortium and especially, Deltares, CMCC, UniBO, Hereon, DMI, SOCIB
---	---	---

EDITO Model Lab What-if Scenario

EDITO Lab Digital Twin will be built enabling What-If scenarios to be tested.

What-if in:

- Nature Based Solutions for Biodiversity and coastal hazards
- Marine plastic for Zero pollution
- Aquaculture for Zero carbon

Developing a locally adapted Digital Twin using the most up-to-date cross-disciplinary modelling systems.

End to end development of a Digital Twin that provides new products and on demand models for What-If scenario

Tools and methods

What-if scenarios in NATURE BASED SOLUTION

DIGITAL TWIN FOR COASTAL NBS

WIS designed to improve protection of local communities and mitigation of the impact of the flood, droughts, storms on biodiversity using NBS

• Are indigenous seagrass meadows able to reduce the energy of storm surges, and if so how?

Problem and Solution to be tested

Problem:

European coasts
Flooding and coastal
erosion

Solution:

Coastal sea grass:
potential NBS for wave
amplitude reduction

Digital Twin Modelling framework

Wind-wave model

Hydrodynamic model

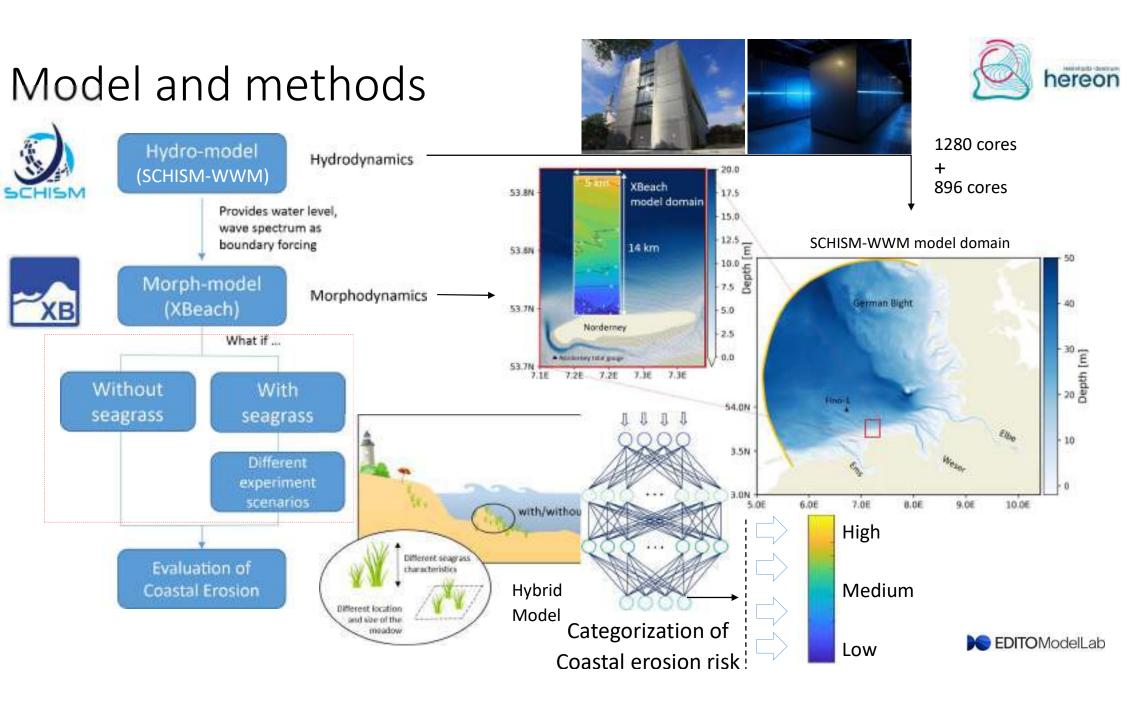
SPM model

Vegetation model

Al/ hybrid model

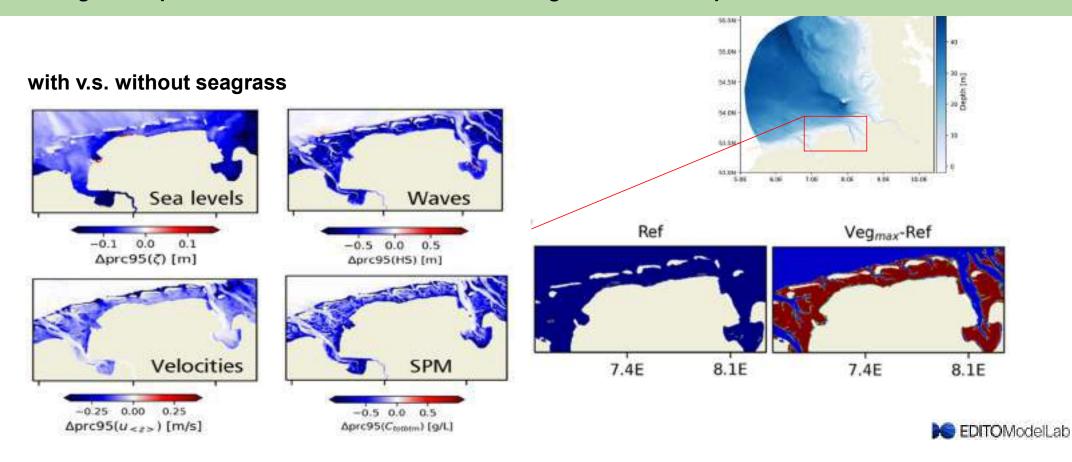
Calibration/ Validation with satellite data and local observations

What if scenarios

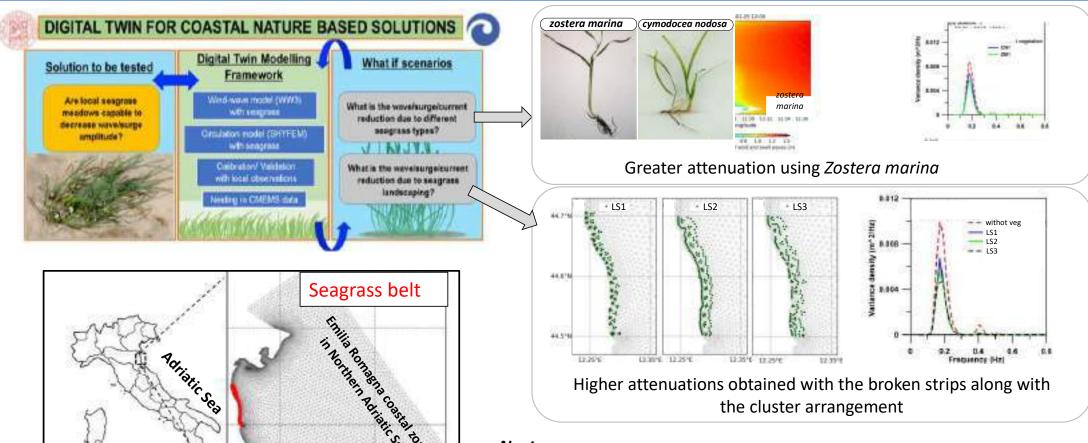

What are the best seagrass types and their landscaping for optimal coastal protection?

How can the optimal seagrass meadow (location, size) be determined regarding the management strategies and climate change (e.g. SLR)?

A)TOModal


Model and methods 1280 cores Hydro-model Hydrodynamics (SCHISM-WWM) 896 cores XBeach 53.8N 17.5 model domain Provides water level, 15.0 wave spectrum as 12.5_ SCHISM-WWM model domain boundary forcing 14 km 53.8N 10.0 the 7.5 Q Morph-model Morphodynamics German Bight (XBeach) 53.7N 5.0 Nordemey 2.5 What if ... 0.0 derroymen group 7.2E 7.2E 7.3E 7.3E Without With 54.0N seagrass seagrass 53.5N Different experiment 53.0N scenarios 5.0E 6.0E 7.0E 8.0E 9.0E 10.0€ with/without seagrass Nearshore scale Different seagrass Evaluation of characteristics Coastal Erosion Different location and size of the meadow

EDITOModelLab

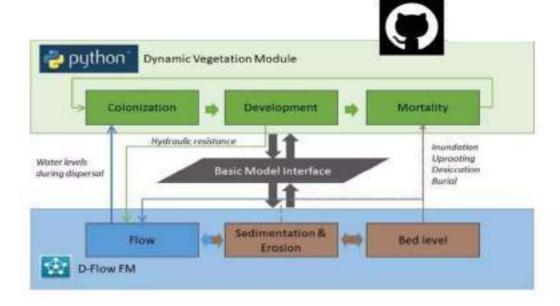

What-if scenarios

- > Sea grass can efficiently reduce (30-80%) kinematics, coastal erosion and resulting sediment mobilization.
- > Sea grass expansion could directly contribute to flood risk reduction in SLR
- > Seagrass expansion could be a useful addition to engineered coastal protection measures

WiS1: What-if of Nature-based Solution in Northern Adriatic Sea

Next:

- > Advance with effect on circulation
- Include flow-dependent parametrization of flexible vegetation (dev WP3)
- Detailed validation

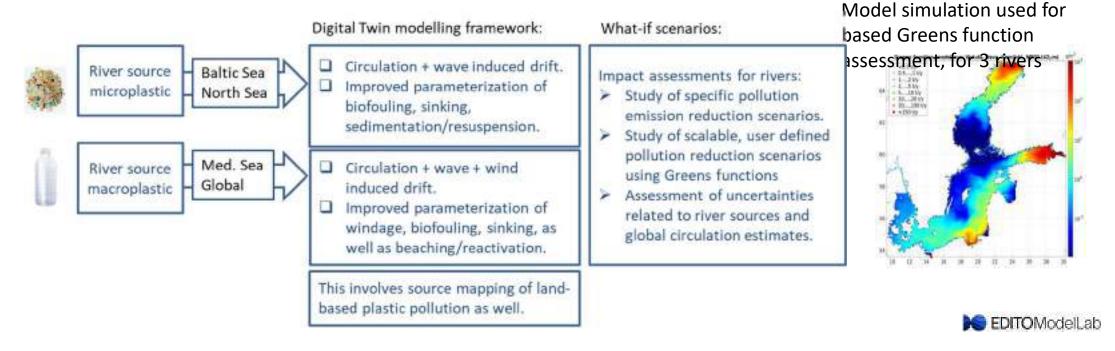


What-if scenarios in NBS, Examples

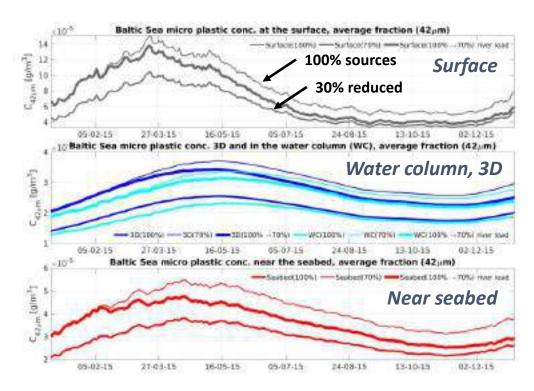
Deltares

Deltares

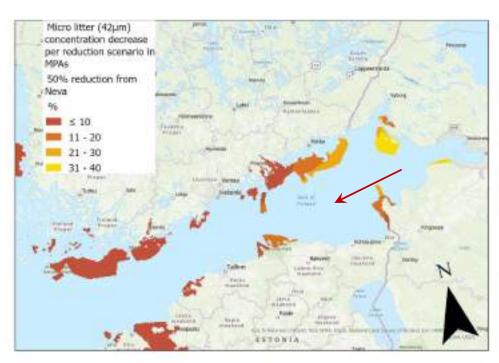
• Numerous pilots in the North Sea and tropics (e.g. Indonesia) as part of the EcoShape consortium. Salt marsh development modelling, dynamic vegetation modelling (the dynamic extent of the salt marsh is assessed by modeling online-coupled hydrodynamics, morphodynamics and vegetation growth using the numerical **Delft3D-Flexible Mesh** model, and a vegetation growth module).



WIF in Marine plastic for Zero pollution


What-if scenarios to study the effects of plastic pollution levels reductions in rivers on the spatial distribution of plastic in the marine environment.

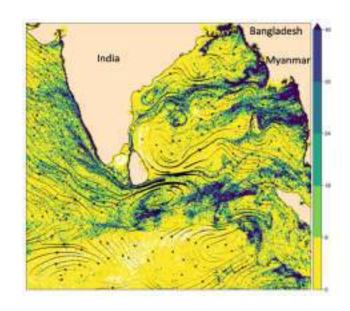
The assessment uses updated drift and fate modelling components and source mapping estimates (DTO) to study spatial and seasonal distributions of marine plastic pollution using Greens functions and user defined reduction scenarios for individual rivers.



WiS2 service products: management scenarios for land-based microplastic (MP) pollution (Baltic Sea) - HBM model

User needs: with x% of reduction in a major source (a river or WWTP), what are the impacts on the reduction in the sea? Example: 30% reduction of river inputs for Household MP, showing MP reduction in surface, water column and seabed

User needs: how will reduction of x% MP in given catchments will affect MP concentration in targeted MPA areas

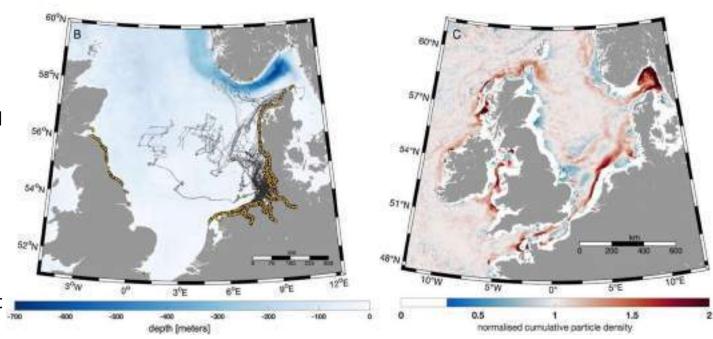

Example: Neva, Impact of a source reduction of 50%: Simulated changes in concentrations of middle-size micro plastics (42 μ m) in the HELCOM MPAs in the Gulf of Finland (user to specify MPA)

WiF- MOI

Surface 2D Lagrangian drift tool modelling plastic abundance at global scale using mass coastal and riverine input estimations, enabling what if scenario on input levels to assess impact at local/regional scale.

- Application: enabling users to assess different plastic reduction scenarios geographical area: full global coast coverage time scale: access to sufficiently long period of simulation (decadal timescale) to include ocean circulation variability
- NEMO model

Simulated plastic abundance for a given month obtained with ocean and wave current reanalysis product


WiS2 for Marine Pollution

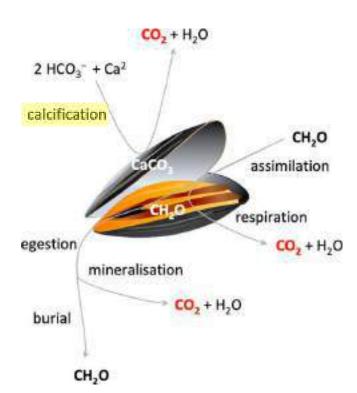
- Demonstration Area: North Sea
- Products depending on:
 - user-specified scenario based on the change rate in the river discharge, and macroplastic disposal volume.
 - user-specified river(s).

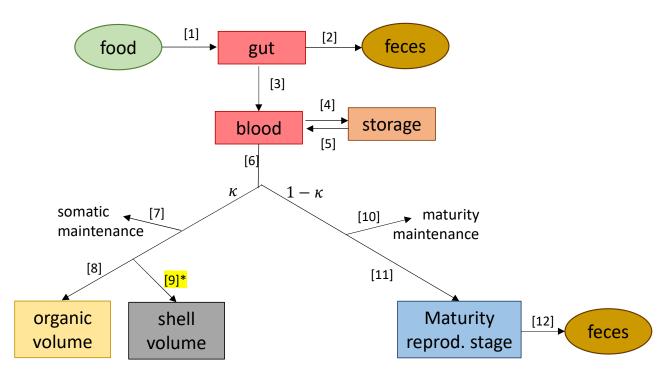
User needs:

- Information/data of different humanuse scenarios to promote more robust and effective efforts to macroplastic disposal reduction.
- Information/data about the major sources of macroplastic pollution.
- Information/data on the possible pathways of macroplastic into MPAs in different scenarios to improve management and mitigation plans.

Example of visualization:

(left) particles along the coast (yellow dots), and cumulative trajectory (black lines) for a user-specified scenario;

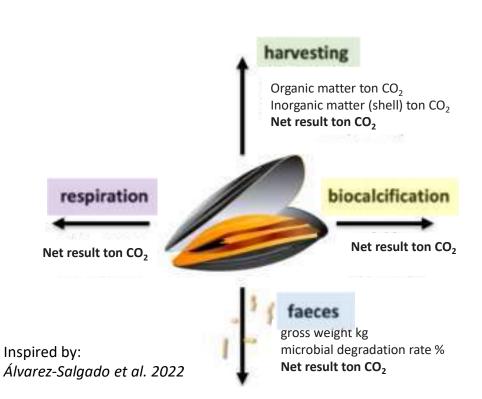

(right) Macroplastic (particles) concentration showing the tendency of particle accumulation (NCPD>1) and dispersal (NCPD<1)

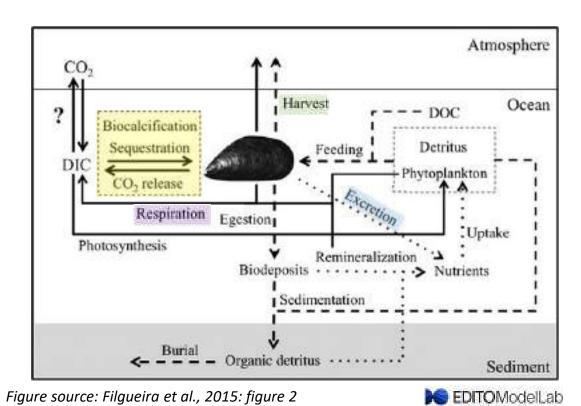

WiS3: including biocalcification DEB representation of shellfish

In 2023 calcification (Stechele & Lavaud, 2024) is added as a process [9] to representation of shellfish in the DEB-model,

integrated in Delft3D-FM-WAQ

Álvarez-Salgado et al. 2022


Adjusted scheme, based on figure 2.1 from: Troost et al., 2010


General structure of a DEB model with [1] ingestion, [2] defecation, [3] assimilation, [4 & 5] reserve/storage dynamics, [6] utilization, [7] maintenance, [8] organic growth, [9] shell growth or calcification, [10] maturation, [11] reproduction, and [12] spawning.

WiS3: Impact of upscaling shellfish cultivation on carbon cycle

Work for 2024:

- Parametrization of DEB-model extension
- Running carbon-cycle impact scenarios with hydrodynamic simulation of North Sea and DEB extension
- Creating impact visualisation, like hereunder
- Integrating on EDITO platform

Milestones

Task 7.4 Training end-users and stakeholders (Lead: SOCIB | Partners: MOi, CMCC, Deltares, UniBO, DMI, Hereon, +ATLANTIC)

Training tools will be developed to support the end users hands-on training session

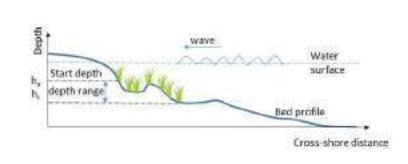
The material will ensure that users can create sessions of work to develop their own what-if scenarios and simulations based on the DTO infrastructure.

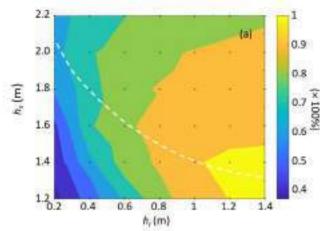
The training:

- a plenary presentation introducing the system and tools;
- 2) a hands-on practical session during which the trainees will be able to implement and run what-if scenarios,
- 3) a debriefing session to discuss achievements and potential difficulties.

Task 7.5 Fit for the purpose of scientific validation and assessment of what-if scenarios (Lead: MOi | Partners: CMCC, Deltares, UniBO, DMI, Hereon, SOCIB).

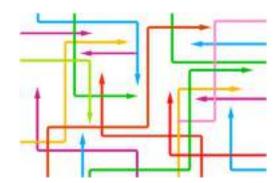
- Develop fit-for-purpose solutions in the frame of the Mission as well as with projects funded under the Green Deal call
 - discussion and connections with ILIAD, ULTFARMS started
- Evaluate fitness-for-purpose, and perform quality assessment and user validations.
 - will be coordinated with other validation tasks in WP3, WP4
- Support and facilitate synergies between the Mission's lighthouses and the European DTO developments ensure appropriate communication
 - link with communication activities especially T8.3




For each WIF technical information is provided, here example for WIF1 - Different meadow sizes and locations

Task	Computing	Container	Input Size	Output Size	Typical
Data - Access	Cloud				1 CPU
Data - Download	Cloud			CMEMS hydrodynamics ≈ 180 GB	1 CPU
Pre Processing -	HPC		~180 GB 1	< 1 GB	1 CPU
Pre Processing Physical bou	HPC		same input as above	< 2 GB (1 year, Sponge layer)	1CPU
Pre Processing -	Cloud		1GB	1GB	1 CPU
Pre Processing - Grid +			1GB	150 MB	1 CPU
(Pre-)Processing -	HPC				168 CPU
Processing -	HPC	None	<2 GB	25 GB per day / ~ 9 TB per year	1280 CPU
SCHISM-ECOSMO @SNS	HPC	None	<10 GB	5 GB /day, 2 TB/year	360 CPU
Post Processing -	Cloud or HPC	Docker or	125 GB	temporarly 25 GB per day / ~ 9	<1-12 CPU
Post Processing -	Cloud	Docker or	4 - 30 GB	3 - 36 GB	1 CPU

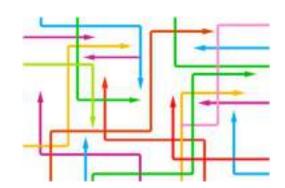
Reduced erosion volume



Technical Online meeting for WIS1

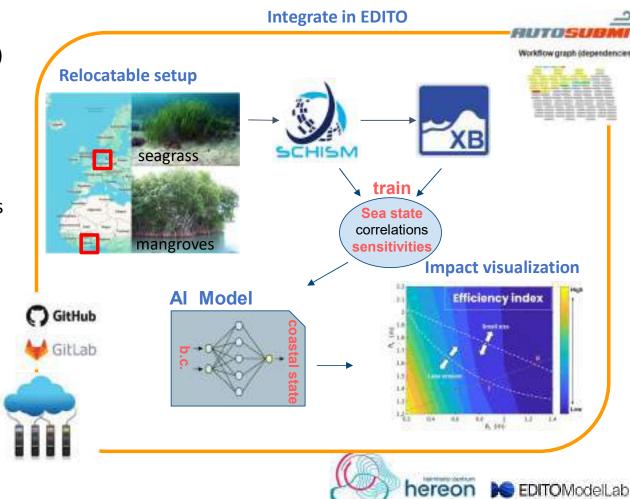
Meeting with WP3-5 and EDITO Infra to

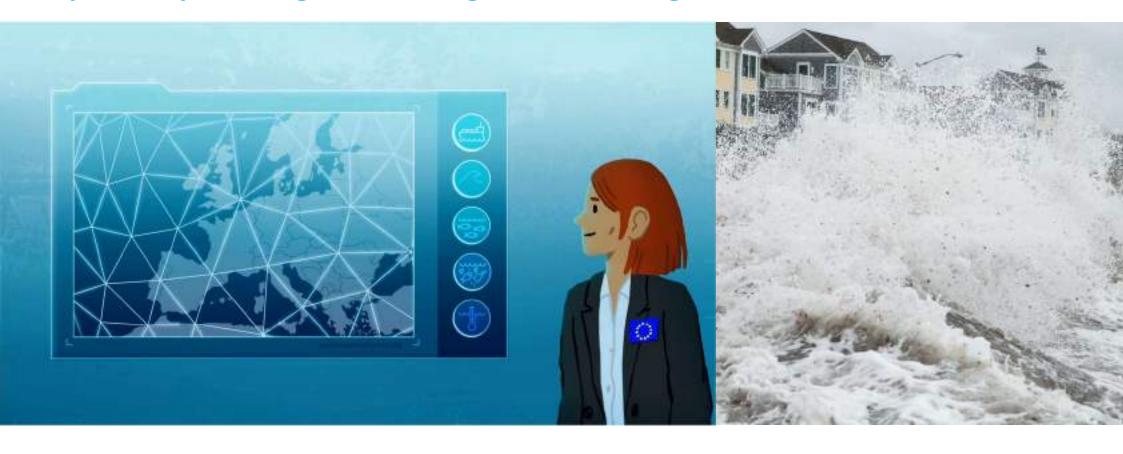
- Demonstrated the level of readiness of WIS applications
- Show the data workflow
- Discuss technical demands
- Discuss visualization strategy
- Integrate WIS1 data and model system in the EDITO infrastructure



Technical Online meeting for WIS – Future actions

- Define specific questions for the users for the WIS
- Expand / update technical table of requirements as an entry to the platform
- Update information about Input/Output
- Requests for native HPC installation
- Common repository (e.g. Wiki, Confluence) for integration on HPC (idea: dedicated GitHub for the project)
- Bi-lateral meetings to organize technical specifies
- Preparing VIDEO (WP8)




Workplan 2024

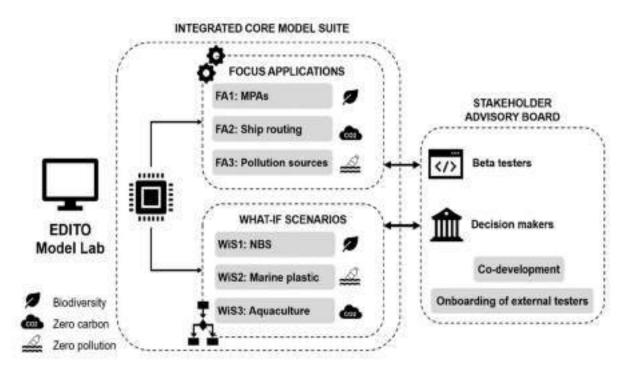
- Enable relocatable Setups on EDITO platform
 - with configurable NBS (seagrass, mangroves)
- Al developments as part of the modelling system
 - to enable faster simulations
- Impact visualizations
 - user can browse different metrics of benefits
 from NBS
- Integrate model system in the EDITO infrastructure
 - containerized setups
 - autosubmission

Example 1

The Digital Twin Ocean to assess coastal Nature Based Solutions capable of protecting the coasts against storm surge and coastal erosion

Deliverables

Deliverables: D7.1 (Demonstration including handbook). **Contribution to D1.2** (Design of the What-if Scenarios including stakeholders' contribution) **and D8.3** (Outcomes for the What-if Scenarios)


-				T. U.S. 165		
D7.1	What-if Scenarios demonstrations	WP7	8 - HEREON	DEM — Demonstrator, pilot, prototype	PU - Public	24

Demonstrations of the usage and outcomes of the DTO engine with 3 WIS:

- (i) Nature Based Solutions for Biodiversity and coastal hazards,
- (ii) Marine plastic for Zero pollution, and
- (iii) Aquaculture for Zero carbon.
- The WIS demonstrations will support the Ocean Mission Ocean Lighthouses by running test cases in the global ocean and the European Seas (lighthouses)
- The application of the modelling suit and its quality assessment will documented in handbooks (e.g. Wiki, Confluence) to support the training of end-users and the usability of the DTO methodology on WIS, in line with the Mission priorities

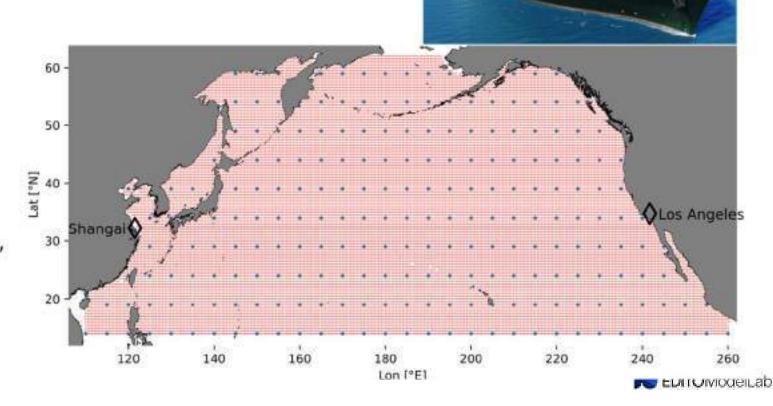
Questions?

European Digital Twin Ocean

VISIR-2 for zero-carbon shipping in a Docker container

16 January 2024 - Lecce & online

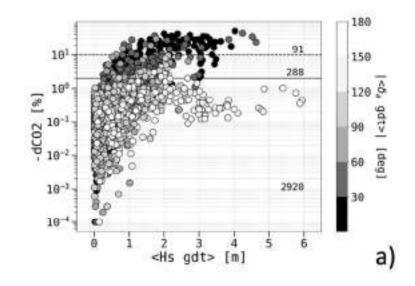
Gianandrea Mannarini, Mario Leonardo Salinas, Amal Salhi, Ivan Federico



VISIR-2 planned deployment in the Pacific


- Shanghai Los Angeles green corridor of shipping
- preliminary assessment of VISIR-2 computational cost
- graph of the North Pacific with
 ~ (½)° horizontal resolution
- two products/ service levels:
 [freemium] precomputed
 routes with departures on a
 coarser grid (5°)
 [premium] on-demand routes,
 with any departure location
 (nearest to the ½ grid)





VISIR-2: published case study

VISIR-2 open-source ship routing model (preprint under evaluation):

- spatial diversions to: avoid upwind sailing and exploit currents
- two-digit CO₂ percentage savings possible

PREPRINT:

https://egusphere.copernicus.org/preprints/2023/egusphere-2023-2060/

VISIR-2 for EDITO-ML: input wave fields

Global Ocean Waves Analysis and Forecast

Models Glabal, 0063* x 0003*

Mixed layer thickness, solinity, see iou sensurface height, horgenature, velocity, wave.

3 Oct 2021 to 22 Dec 2023, hourly

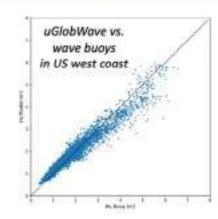
Global Ocean Physics Analysis and Forecast

Models
Girlat, G083* + 50 tevels

1. Nov 2020 to 23 Dec 2023, hourly, dully, mentity Mixed laser dischross, satisfy, sea ke, sea surface height, temperature, velocity, were

CMEMS waves and currents

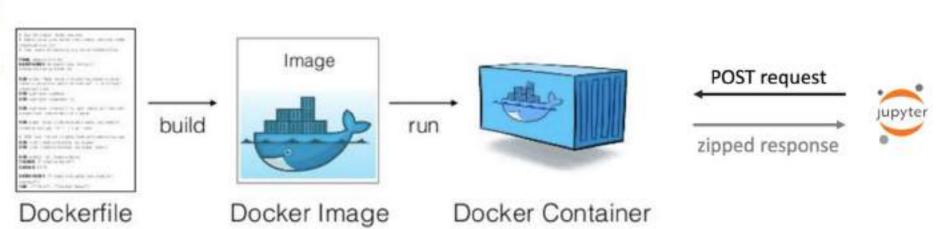
- (1/12)° grid
- based on MFWAM model
- daily analyses since 2021
- 10 days forecasts
- 3-hourly resolution


https://data.marine.copernicus.eu/product/GLOBAL_ANALYSISFOR ECAST_WAV_001_027/description

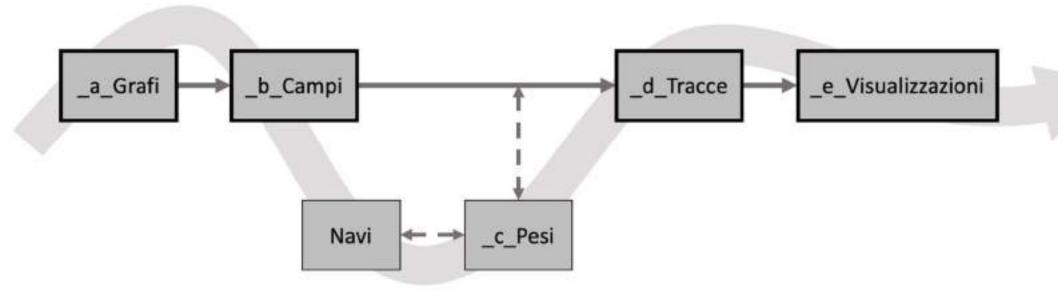
uGlobWave

- (1/2)° grid from Mentaschi_2023
- based on WW3 model
- we already have one full year (2020)
- hindcast will be extended for a longer period (an EDITO-ML WP3 output)

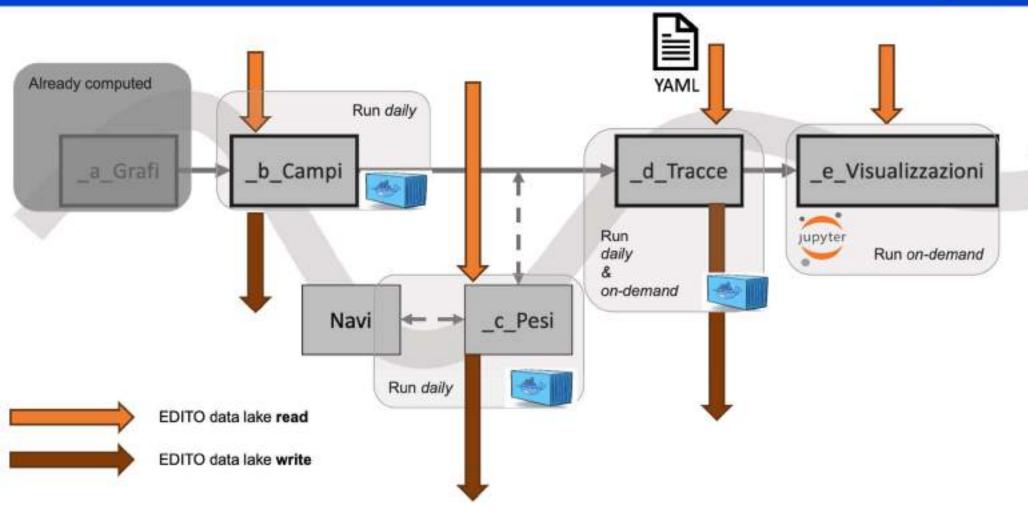
Mentaschi et al., 2023 DOI: 10.3389/fmars.2023.1233679


Frontiers in Marine Science

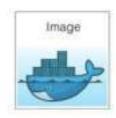
VISIR-2 for EDITO-ML: dockerization



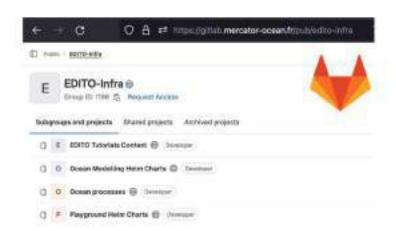
VISIR-2 for EDITO-ML: workflow



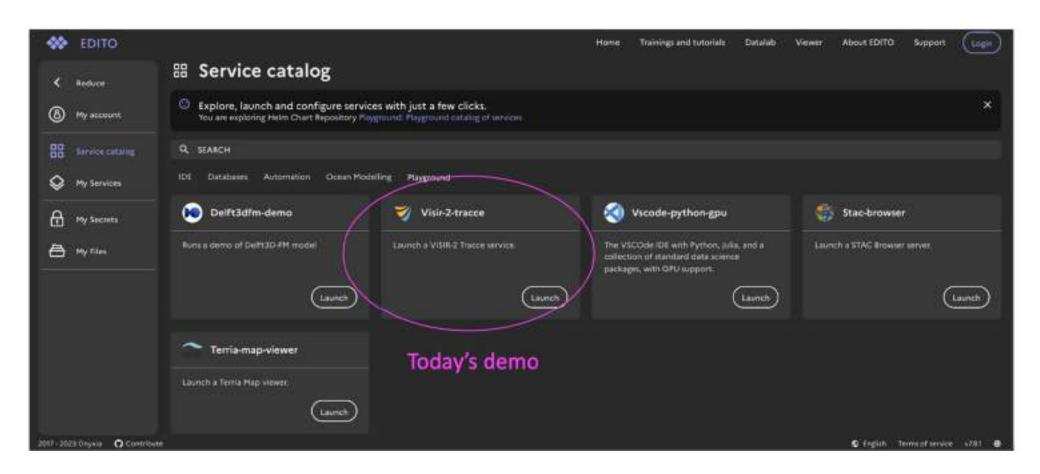
VISIR-2 for EDITO-ML: workflow



Own web application as an EDITO service


Publish VISIR-2 Tracce image online

Create helm chart (--> orchestrator) from EDITO template


 Send merge request to one of the EDITO git repositories (Playground, Ocean Modelling)

EDITO-ML Service Catalog

VISIR-2 for EDITO-ML: Further steps & questions

DONE:

Developed HTTP interface for VISIR-2

VISIR-2 Tracce containerized

VISIR-2 Tracce deployed on EDITO-ML Datalab

Jan 2024 TODO:

Dec 2024

Consolidate VISIR-2 Tracce service (process+notebook)

Integrate all VISIR-2 modules in EDITO-ML

Production of VISIR-2 routes (from operational data feeds)

Discussion

• Discussion (10')

General Assembly 16-18 January 2024 – Lecce, Italy

BACK TOMORROW

9:30 *start*

dakujem Hvala vam tack obrigado mulţumesc gracias Ačiū Grazzi Dziękuję Ci grazie Paldies Danke Dekuju Hvala vam thank dank je δηαιομαρη τη ΥΟΟ aitäh και skal du have ΥΟΟ αitäh κόστο Μετεί σας ευχαριστώ κόστο σος ταίδη maith agat

