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02.Materials&Methods 03. Results & Analysis

The method used for both airborne and UAV datasets is describing in Figure 5 below. After acquiring point clouds, we pre-process the data by removing

noise points, coloring the points using photos taken simultaneously with two missions, normalizing the intensity to have a same scale of intensity, and o
- Quantitative result :

selecting the area part of forest or parcel to obtain two representative sample subsets.

After the semantic segmentation of points using the “3dMasc” [4] machine learning method, we used the "Treeiso"[5] clustering method to isolate the

o . . , The 'Treelso' method yields 80 falsely identified trees among 1185 trees for forest data,
trees, then separated the resulting file into elements to count trees, and finally compared the results obtained with those separated manually.

resulting in an error rate of approximately 0.06. The outcomes for the forest are

-

Y 40 _ detailed in Table V below. When applied to parcel data, the 'Treelso' method indicates
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Figure. 3: Illustration of the 3D Multi- Table V: number of trees computed automatically and manually for forest data
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. Traditional manual methods are labor-intensive, time-consuming, and prone to Figure 4 ; treeiso’s work [5]
human error, making them impractical for extensive forest inventories [3]. This study Figure 5: The general workflow of proposed approach

explores using LiDAR data and semantic segmentation to overcome these limitations.
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of tree counting?

The results obtained for semantic segmentation and tree isolation are schematized in the figure 6 below. This research presents a novel approach to semantic segmentation using the 3D
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