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Insight into Maritime Surveillance Through Integrated

Multi-Source Satellite Imagery
Monitoring Oil Spills, Detecting Vessels, and Observing Extreme Weather
OIl Spill Detection and Monitoring
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O Deep Learning (DL)-based ship detection from optical imagery widely used in Performance of Various DL Models
maritime surveillance, as it can efficiently process large volumes of data under

cloud cover and challenging weather and ocean conditions. YOLOvss T e on et DRENet = e on one g Small-Scale Cloud Impact & Met-Ocean Turbulent Impact
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 Numerous previous studies focusing on ship detection using high-resolution (HR)
optical images, largely due to the availability of extensive HR datasets, relatively !
few studies have explored ship detection using medium- and low-resolution
optical images.
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d In maritime surveillance, especially in emergency situations, integrating images
from different satellite sensors having proven to be an effective and practical
method for detecting and tracking ships, given the extended revisit times between _ - Lafcesl 8
Image acquisitions - need to propose appropriate learning approaches? st ? oten paaset® P e gten | gest DL models trained on l DL models trained on
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% Building up various optical datasets (Planet, Sentinel-2, Gaofen-1/6, and
Landsat-8)

% Training DL models on one dataset and testing them on others,

% Training DL models on the combination of various datasets consisting of
diverse contexts and under different sea state conditions, and testing on others,

% Assessing the performance of the proposed strategies to assess the impact of _ _ : .
small-scale cloud patterns and turbulent met-ocean on ship detection. sentine MO st gortin®? e ppase - This study recommends combining multi-source optical !

imagery to increase the diversity of training data, |
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. Combining fo_ur datasets with _varying spatial resolution; (high, medium, oroviding an effective and practical solution to enhance
. and low) significantly enhancing ship detection, especially for Gaofen- : : <hib detection accuracy for limited ontical datasets :
25 km daily commercial . 1/6 and Landsat-8/9 imagery, as the appearance of ships on the sea | P | Y P ' 5
wolkm | sdas Public . surface remains relatively consistent across most optical images. 1 For future work, it would be valuable to explore whether !

gookm  4days Limited d Integrating multi-sensor images for training models being essentialé Combining small training datasets from multiple .Sensorsé
. for effective ship detection - help to overcome the limitations ofi;  €an effelctlvely compensate for the lack of extensive datai
scarce high-resolution images and insufficient annotations for training. from a single sensor.

Mesoscale Convective System Observation and Monitoring

3D view of a convective systembasedon Early stage of a squall wind event Peak stage of a squall wind event Late stage of a squall wind event
low earth orbit (LEO) and geostationary (GEO) satellites 12 Ju ly 2019 5 M ay 2019

e ——— 30 Aug. 2020 )
SF":Z?»::?:A’-’E-“s> e Altitude (z) g 89°W 88.5°W 88°W 87.5°W 87°W 86.5°W 79.8°W 79.2°W 78.6°W 78°W 77.4°W 76.8°W 79.2°WI8.6°W 78°W 77.4°W76.8°WI6.2°W
. = . 25

_ —

] — jow brightness

= “convection (seen @ - . g ° [ % [“27°M..,

Deepcon\'edmseowwsat. 30.3°N 7 - .59 79°W  785°W  78°W  77.5°W  T7°W

umpeﬂ'“’em R : L oAy e -

here Meteosat) ————— : : St} R T 30 p— Sentinel-1 wind speed

’ - 3 N o B
n 3 ’ B 5 T = $5 | 30°N R -2 A
r""%ause | s L 25 N W ssumed -wind-
e e PR fronty

185 km 16 days Public

78.5°W 78°W 77.5°W 77°W 76.5°W 76°W

30.5°N

30.25°N

s

: 29.7°N

1
[
wn

|~ Wind verti

T
=
U

30°N

L—

29.75°N

29.4°N

R | 20.5°N

Wind speed [m-s]

N | 29.25°N

Wind speed [m

1
[
o

Wind speed [m-s]
Wind speed [m-s]

29°N

29.1°N

Ny assumed
¥ wind fron!
%
1 28.75°N
78°W 77.5°W 77°W 76.5°W 76°W

Lat/lon

28.8°N

79°W 78.5°W 78°W 77.5°W 77°W

| o 28.5°N
. 1 Extreme weather events, such as mesoscale convective !
! 88.5°W 88°W 87.5°W 87°W 86.5°W 79.8°W 79.2 - - 79.2°W78.6°W 78°W 77.4°WI6.8°WI6.2°W

systems (MCSs), thunderstorms, and squall lines, 25
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Severe CSs regularly produce hazards over the land and
ocean, including strong surface winds (exceeding 25 !
m/s), heavy rainfall (above 10 mm/hr), and lightning.
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and deep convective clouds, as proposed in previous 5_0_\/——-/
works - a significant step forward in enhancing our :
understanding of deep convection and its dynamics. | 2.5 -
Importantly, the results obtained are expected to! In-situ measurement
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This study aiming to evaluate surface convective winds :

estimated from SAR data across numerous cases and to
validate the relationship between strong surface winds !
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SAR-estimated convective winds vs. in-situ measurements: .
different periods of a convective wind gust . U Significant agreement between satellite-based wind speeds and in-situ data (not shown here) with even better matching for winds over 10 m/s.
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e Sentinel-1 sampling time (UTC)  time - UTC) time (UTC) . 1 Three specific cases illustrating various stages of convective squall events: before, during, and after the occurrence of a squall peak - SAR-estimated wind speeds matching in-situ |
Case #1: cary stage of asquall 30 August 2020, 114940115008 42012 (3.8 m, offshore New Orleans,  114616-144116 . measurements, including the peak convective wind (18.90 m/'s vs. 20.69 m/'s), also matching deep convective clouds observed by GOES-16 sequential GEO images. '

wind event 1100-1600)

Case #2: peak stage of a squall 12 July 2019, 110954-111113 SPGF1 (6.6 m, offshore the Bahamas, 104132-120132

e 0001500, ' O This study addressing multiple avenues for refining the Geophysical Model Functions to enhance surface wind speed estimation from SAR images. It also supports the development of both |
Case #3: latestageof asquall 5 May 2019, 231209-231349 410101 m,offthe castcoaftof  214125-233125 . quantitative and qualitative climatology for convective versus synoptic events across different regions, as well as improvements in weather monitoring and forecasting.
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