

ADVANCING OCEAN PREDICTION SCIENCE FOR SOCIETAL BENEFITS

Digital Twins

SURF: A Relocatable Platform for On-Demand High-Resolution **Ocean Modelling for the Digital Twins**

Francesco Trotta¹, Luca Giunti¹, Ivan Federico¹, Salvatore Causio¹, Matteo Scuro¹, Rodrigo Vicente Cruz¹, Nadia Pinardi^{1,2}, Giovanni Coppini¹

¹ GlObal Coastal Ocean division of the Euro-Mediterranean Center on Climate Change (CMCC) Lecce, Italy, ²University of Bologna, Department of Physics and Astronomy, Bologna, Italy

Introduction

In today's world, the accessibility of operational large-scale regional ocean models from platforms like the **Copernicus Marine Environment** Monitoring Service (CMEMS), combined with the availability of advanced computing infrastructures such as cloud computing and high-performance computing (HPC), is making the creation of highresolution, on-demand digital representation of the ocean a reality.

There is a growing international interest in the implementation of high-resolution, shelf-coastal numerical models to deepen our understanding of marine systems and their sensitivities to climate change. These modes are essential for capturing fine-scale processes that coarse-resolution global and regional models cannot resolve.

Paragraph

Overview

The Structured and Unstructured grid Relocatable Ocean platform for **Forecasting** (SURF) is an innovative open-source ocean modeling platform designed to setup, execute and analyse high-resolution nested ocean models in any region within a large-scale Ocean Forecasting, Analysis and Reanalysis System.

SURF integrates two state-of-the-art ocean models:

- the structured-grid model **NEMO**, tailored for open ocean and shelf applications,
- the <u>unstructured-grid</u> model **SHYFEM-MPI**, ideal for accurately modeling complex coastal dynamics.

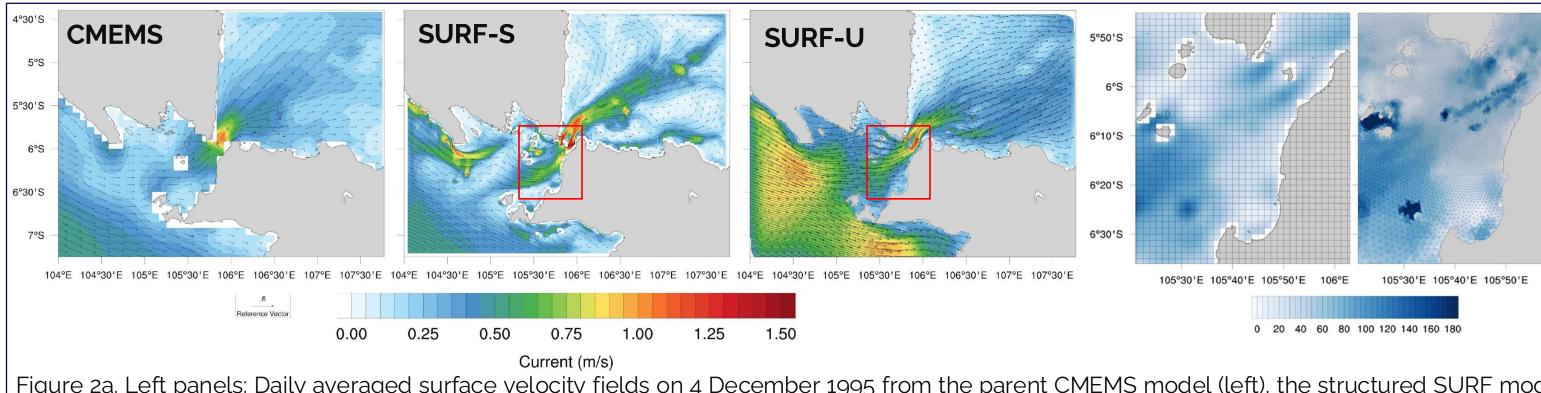


Figure 2a. Left panels: Daily averaged surface velocity fields on 4 December 1995 from the parent CMEMS model (left), the structured SURF model (center), and the unstructured SURF model (right). <u>Right panels</u>: Horizontal grids for the structured (left) and unstructured (right) SURF models.

(left)

anc

SURF-S

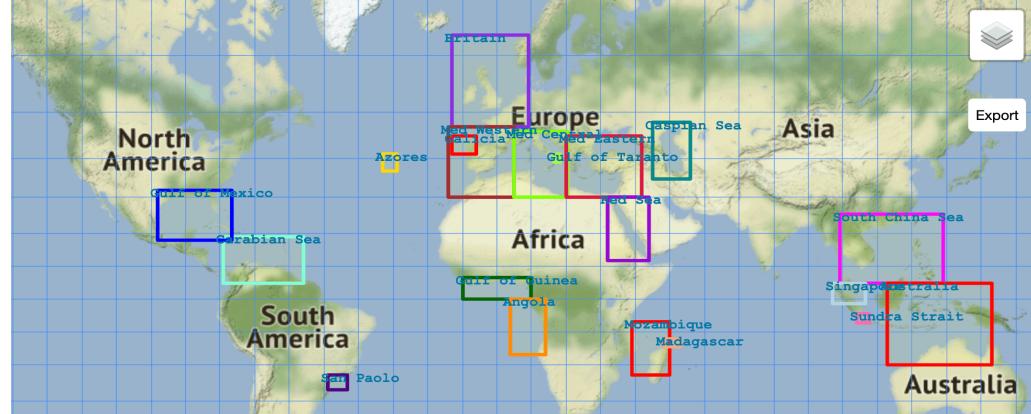
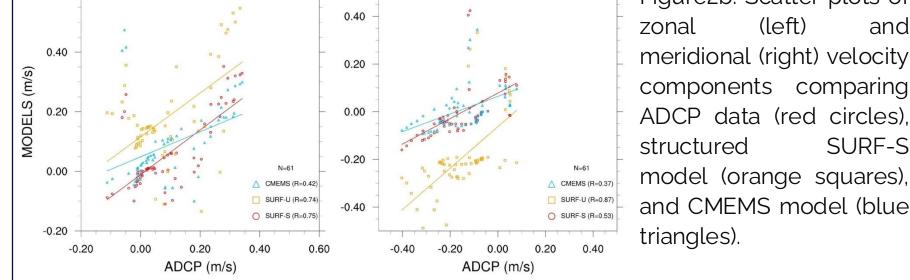



Figure 1. Boundaries of nested domains implemented with SURF across different regions of the world's oceans

Applications

SURF has been implemented and validated in various regions of the world's oceans (Figure 1), downscaling from large-scale ocean prediction systems, like global and regional CMEMS products. The nested high-resolution models have shown **better performance** compared to their parent coarse-resolution models.

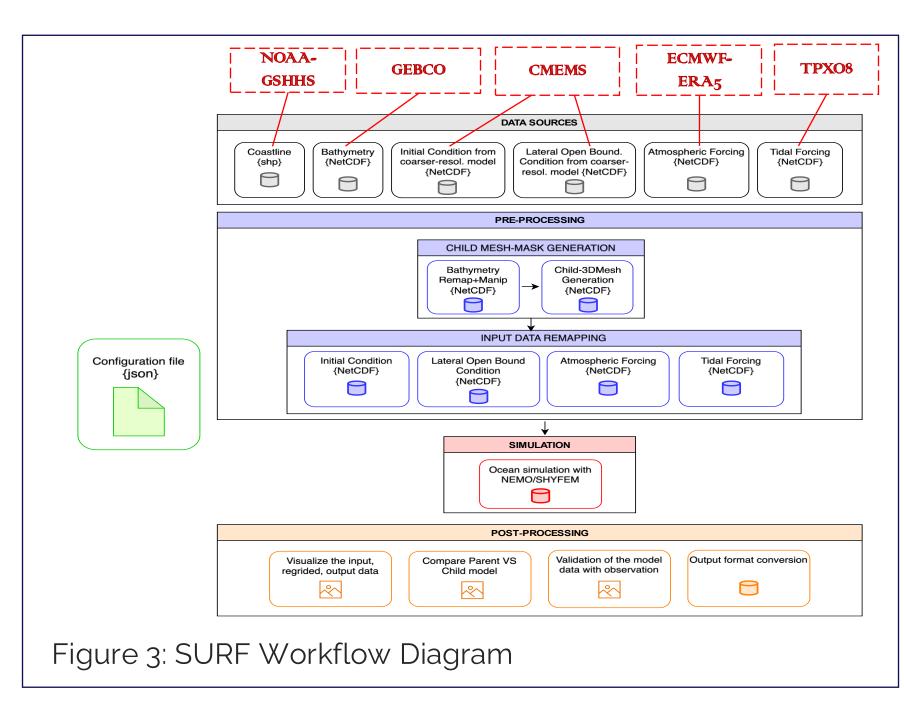
Meridional Velocity Zonal Velocity Figures 2 showcases a study where both the structured and unstructured grid components of Figure2b. Scatter plots of

SURF were used to downscale CMEMS-global reanalysis data, assessing the impact of horizontal resolution on ocean currents in the Sunda Strait (Jakarta, Indonesia). While both CMEMS and SURF captured the dominant large-scale circulation in the strait, SURF's higherresolution grids revealed additional small-scale features and showed improved accuracy in reproducing ADCP velocity measurements in the region (Trotta et al., 2021).

Workflow

SURF provides a high-level, user-friendly interface to conduct an ocean downscaling experiment from start to finish, including input data acquisition and pre-processing, model <u>execution</u>, and <u>post-processing</u> for visualization and analysis of results.

Virtualization Technology



The platform is distributed as a Virtual Machine and Container Images, using portable virtualization technology for easy deployment across various computational environments, ensuring accessibility for educational institutions, commercial enterprises, and more.

Centro Euro-Mediterraneo sui Cambiamenti Climatici				Ŷ	UserName Super Admin
NU	Surf Platform				
orms >	1 2 3 4 5 6 Experiment				
	General experiment settings. Ocean model *		Configuration leve	el * 🕕	
	Nemo	~	Base		· ·
	Experiment name * 🕕	Number of proces	sses * 🕕		
	gulfTaranto_20141005	4			
	Overwrite * 🕕				
	Horizontal grid resolution * 🕡				
	48				
	O Manually Enter from Fields		Select from Map		
	Please draw a rectangle on the map to select the area. Use the map tools on the top right corner. ①				

Graphical User Interface

A Graphical User Interface (GUI) is currently under development to provide an intuitive and efficient way for users to interact with the SURF platform. The GUI aims to simplify the model-building process and enhance the visualization and analysis of results, ensuring a

user experience that is <u>simple</u>, <u>fluid</u>, <u>intuitive</u>, and <u>efficient</u>.

Conclusions

- SURF is a valuable tool to supports **Decision Support System (DSS)** by providing high-resolution ocean forecasts crucial for applications like oil spill monitoring, search and rescue operations, navigation routing, fisheries and tourism.
- On-demand regional and coastal high-resolution models can be beneficial to diverse end-users, including coastal managers, harbour authorities, civil protection agencies and maritime communities.
- By providing high-resolution ocean forecasts, SURF can play a crucial role in **mitigating risks**, **protecting** communities, and reducing potential losses.

Discover more about SURF-Platform at http://www.surf-platform.org/.

