ž 큀 औ \aleph 哭 \square 気後 ig the second se X ď

Development of Observing Quantitative Assessment Capabilities

Lidia Cucurull

Director, NOAA Quantitative Observing System Assessment Program (QOSAP)

OceanPredict Symposium Paris, France November 18 - 22, 2024

Department of Commerce // National Oceanic and Atmospheric Administration // 1

NOAA QOSAP Program

Inform major decisions on the design and implementation of optimal configurations of observing systems

- Increase NOAA's capacity to conduct quantitative observing system assessments
- Investigate impacts and trade-offs of alternative mix of current and/or proposed instruments for better understanding and prediction of Earth Systems

QOSAP Program Key Activities

- Maintain and improve infrastructure to conduct quantitative assessments
 - observing system experiments (OSEs) and observing system simulation experiments (OSSEs) capabilities for Earth Systems
- Conduct trade-off studies to optimize observing system architectures
 - OSSEs to investigate impacts and trade-offs of alternative mix of current and/or proposed instruments for better understanding and prediction of Earth systems
- Evaluation and optimization of current in-situ and satellite observations
 - Perform OSEs to quantify and improve impact of existing observations
- Provide information on the impact of proposed changes to observing systems

Benefits

- QOSAP is a comprehensive resource tool for evaluating the impact of Earth systems observations (current and proposed) in numerical weather prediction
 - Improvements in weather models' performance translates into societal benefits (i.e. early warnings on hurricane forecasting)
- Results help inform major decisions on the design and implementation of optimal configurations of observing systems for constellation planning
- Many critical investment decision factors are not addressed by modeling exps
 real cost, opportunity costs, partnership implications, exploitability and sustainability
- Overall, OSE/OSSE evaluations are a powerful tool to support architecture tradeoff analysis for decision making

Today's modeling and observing systems capabilities: Observing System Experiments (OSEs)

ž

퀭

औ

 \approx

哭

 \mathbb{A}

12

ġ.

X

Å

- Enhanced data assimilation strategies
- o More realistic characterization of observations
- Management of large volume of data
- Timeliness for model upgrades

• Can we leverage existing observations not currently utilized?

- Driven by requirements and priorities
- Investment in personnel and HPC resources

Looking ahead and simulating the future: Observing System Simulation Experiments (OSSEs)

- Costs of developing, deploying and maintaining new spacebased architectures typically exceed \$100-500 million/instrument
- Need to provide quantitative information on the impact of proposed observing systems in the next planned generation of numerical weather prediction systems
 - Help inform major decisions by evaluating the impact of alternative mix of current and/or proposed instruments for better understanding and prediction of Earth systems.
 - OSSE studies provide an ideal platform for this
 - Analyze tradeoffs (coverage, resolution, accuracy and data redundancy)
 - o Optimize data assimilation and modeling strategies

X

പ്

ž

QOSAP ocean OSSE system

ž

Č

Courtesy of Dimitris Menemelis (JPL, Caltech) and David Ellsworth and Nina McCurdy (ARC/NAS)

- Nature run: GEOS/MITgcm; coupled
- High interest from the ocean modeling community
- Synergism with OceanPredict and SynObs
- Purpose: Enables enhanced leveraging
 - o Optimization of observing system design, targeting techniques, trade-offs

NOAA

- o Impact of current and proposed insitu/satellite ocean observations
- Longer-term plans for an oceanfisheries OSSE
 - o Identify requirements, biological and physical variables to be measured
 - o Ocean-Ecosystems, 3-step process?
 - o Physics, circulation
 - o Biological, chemistry
 - o Fish and other marine ecosystems

QOSAP ocean OSSE system (con't)

• Nature run: ECCO model

- Available variables:
 - o SSH
 - o Theta (potential temperature)
 - o Salinity
- Written as tiles: 13 titles
- Resolution: 2-4 km, vertical: 90 levels; hourly output
- Period:2020/01/19-2021/03/26

5

ž

큉

औ

 \aleph

哭

്റ

Interpolation of model fields at obs location

 MITgcm ocean model: ~2-4 km grid spacing, 90 levels, time-step: 45 s, hourly output, period: 2020/01/19-2021/03/26
 KDTree algorithm is applied to interpolate the model fields at geolocations of SSS (SMOS_esa), SST (MetOp_A/B/C) and ADT (Sentinel 3a/3b,CryoSat-2, Jason 2/3,SARAL)

÷č

ন্দ্রী

K)

哭

 \mathbb{A}

	QOSAP ocean O	SE/OSSE model	DAN
• • • •	Resolution: ¼ deg (horizontal), 75 vertical layers (global) Atmospheric forcing: CFSR (¼ deg) Ocean IC from CPC		
	Observation Variable	Platforms	
	ADT (Absolute dynamic topography)	Jason-<2,3>, Sentinel-<3a,3b>, CryoSat-2, SARAL/AltiKa	
	SST (Sea surface temperature)	VIIRS- <npp, n20="">, MetOp-<a,b,c>, NOAA-<18,19></a,b,c></npp,>	
	SSS (Sea surface salinity)	SMAP, SMOS	
	In-situ (T/S profile, sea water temperature/salinity)	Argo floats, XBT, CTD, Glider, drifting and moored buoys, TAO/TRITON, PIRATA, RAMA	

ž

퀭

ॵ

 \approx

哭

⊿

X

ď

Ongoing Work: SST (FR-ctrl)

ž

큉

 \square

気後

÷

R

പ്

FR-ctrl

FR: FREE RUN without assimilation of ocean observations; restart files from CPC; Period: 20191201 to 20200220 ctrl: CONTROL with assimilation of ocean observations; restart files from FR; Period: 20200120 to 20200220

NOAA

Questions?

Lidia.Cucurull@noaa.gov