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2. Adjoint for variational data assimilation (see Talk by Charlotte)

3. Possibility to improve the model by observations

Our solution: Generative diffusion model
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We need data, a lot of data …

1995-2014: Training

2016-2018: Testing
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Regional setup

Lagrangian neXtSIM
+ ¼° NEMO (Boutin et al., 2023)



Train the neural network as generative model

Target ~𝒩 𝟎, 𝑰

Training

3



Train the neural network as generative model

Target ~𝒩 𝟎, 𝑰

+ noiseTraining

3



Train the neural network as generative model

Target ~𝒩 𝟎, 𝑰

+ noise + noise+ noise + noiseTraining

3



Train the neural network as generative model

Target ~𝒩 𝟎, 𝑰

+ noise + noise+ noise + noiseTraining

3



Train the neural network as generative model

Target ~𝒩 𝟎, 𝑰

Initial conditions

+ noise + noise+ noise + noiseTraining

Forcings

Conditioning

3



Train the neural network as generative model

Target ~𝒩 𝟎, 𝑰

Initial conditions

+ noise + noise+ noise + noiseTraining

Forcings

Conditioning

3



Train the neural network as generative model

Forecast

Initial conditions Forcings

Conditioning

?

3



Train the neural network as generative model

Forecast

Initial conditions Forcings

~𝒩 𝟎, 𝑰

Conditioning

Stochastic

3



Train the neural network as generative model

Forecast ~𝒩 𝟎, 𝑰

Initial conditions Forcings

Conditioning

Stochastic

3



Neural network baseline works …
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Averaged over all variables



… but ensemble with generative performs best
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Averaged over all variables
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Smoothing



Deterministic model loses small-scale information …

Small scalesLarge scales

Similarly found in other emulators (e.g., Durand et al., 2024)
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Smoothing Instabilities



… generative model resolves the problems

Small scalesLarge scales
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… generative model resolves the problems
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… generative model leads to consistent forecasts
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After 50 days

… generative model leads to consistent forecasts

Generative

neXtSIM

Multi-Fractal

Similar “physical” laws
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The model generalizes to idealized cases

7

Wind forcing

«

Simulation
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Generative deep learning for sea-ice modelling
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Generative deep learning for sea-ice modelling

Unlocks improved data-driven modeling 
and can be also used for model error corrections

Do you have questions?
(tobias.finn@enpc.fr)
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Exhibits physical consistent forecasts
maintaing the sharpness + scaling laws

Learns efficient Arctic-wide models
similar results + stable for several years

Paper
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