

Preliminary results of SynObs Flagship OSEs -Assessments on impact of satellite altimetry versus Argo profiles-

Shoichiro Kido (JAMSTEC Application Lab)

with Y. Fujii, I. Ishikawa, E. Remy, D. Peterson, J. Water, and SynObs members

2021 United Nations Decade of Ocean Science 2030 for Sustainable Developme

Ocean Forecast and Observing System Experiments (OSEs)

- Data from various observational platform are used to obtain ocean state estimates by constraining numerical models
- Impact of the target observational data can be estimated by observing system experiments (OSEs)

Importance of using multiple systems in assessing impacts of ocean observation

0-300m averaged RMSD of temperature (°C) between the regular ODA runs and OSE without assimilating tropical mooring buoys

Fujii et al., 2015 QJRMS

Multi-system efforts are indispensable to remove the system dependency and to make a robust and reliable evaluation

Overview of Synergistic Observing Network for Ocean Prediction (SynObs)

Endorsed by United Nation Ocean Decade project Lead by Dr. Yosuke Fujii at Meteorological Research Institue

Purpose : SynObs will seek the way to extract maximum benefits from the combination among various observation platforms, typically between satellite and in situ observation data, in ocean predictions.

- ♦ Period : July of 2022∼June of 2026
- Main activity : Conduct a series of coordinated OSEs using multiple operational systems

An overview of SynObs Flagship OSEs

	Argo profiles	Satellite SST	Nadir altimeter	Ship observation	Mooring
					Татта
Control (CNTL)	✓	✓	✓	✓	✓
Without nadir altimetry(NoALT)	✓	✓	×	✓	✓
Without Argo data (NoArgo)	×	✓	✓	✓	✓
Without Mooring(NoMoor)	✓	✓	✓	✓	×
Without satellite SST (NoSST)	✓	×	✓	✓	✓
Satellite only (NoInsitu)	×	✓	✓	×	×
Satellite SST only (SSTOnly)	×	✓	×	×	×
Half Argo (HalfArgo)	50%	✓	✓	✓	✓
Model only(Free)	×	×	×	×	×

An overview of SynObs Flagship OSEs

Name of systems	Resolution
FOAM (UK MetOffice GB)	Global, 9km
GIOPS (ECCC CA)	Global, 25km
MOVE-G3F (MRIJP)	Global, 25km
JCOPE-FGO (JAMSTECJP)	Semi-global, 10km
ORAS5/6 (ECMWF EU)	Global, 25km
RTOFS-DA (NOAA/NCEP	Global, 8km
US)	
GLORe (NOAA/NCEP us)	Global, 100km
GEO-S2S V3	Global, 25km
(NASA/GMAOus)	

Outputs of OSEs are stored in common netCDF format for facilitate analysis

shokido / SynOBS	Q Type 🕖 to
le 📀 Issues 🖏 Pull requests 🕟 Actions 🖽 Proj	ects 🖽 Wiki 🛈 Security 🗠 Insights 🕸 Settings
SynOBS (Public)	☆ Unpin ⓒ Unwatch 1
🐉 main 🔹 🐉 2 Branches 🕟 0 Tags	Q Go to file t Add file + <> Code +
iskidojam Fix bug in S2S Analysis monthly values	a9b4a43 · last week 🕚 118 Commits
Argo_Info	Modify ArRef 9 months ago
	correct CP value in find_tchp, adjust unit of TCHP [kJ/cm last month
SCRIPTS	Fix bug in S2S Analysis monthly values last week
C README.md	Update README.md 5 months ago
	P
SynOBS	

Figure: Snapshot of sea level anomalies on Dec.15, 2020 from satellites and each system

 $RMSE_{SSH}(x, y, i, j) = \int_{t_n}^{\infty} \{SSH_m(x, y, t, i, j) - SSH_o(x, y, t)\}^2$ FOAM GIOPS **MOVE-G3 JCOPE-FGO** (a) RMSE of SSH (CNTL) DE 120E 180120W60W 0.12 0.16 0.20 0.28 0.32 0.08 0.24 0.36 [m] (b) \triangle RMSE of SSH $\frac{451}{151}$ (CNTL .vs. NoAlt) 60E120E180120W60W (c) \triangle RMSE of SSH (CNTL .vs. NoArgo) **75S 75S**

-0.02

-0.01

0.00

0.01

 Both satellite altimetry and Argo data generally have large impacts on the model SSH accuracy

 Improvement is especially evident in the western boundary current regions and around the Antarctic Circumpolar Current.

Global maps of SSH RMSE in CNTL, (B) SSH RMSE difference between NoAlt and CNTL, and (C) SSH RMSE difference between NoArgo and CNTL

0.02

0.05

0.10

[m]

CO
 2021 United Nations Decade
 2030 for Sustainable Develop

(b) Spread of SSH for all systems (NoAlt)

0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36 [m]

The multi-system ensemble spread (i.e., uncertainty) of SSH is reduced by assimilating satellite altimetry and Argo profiles

Figure: Global maps of the ensemble spreads of SSH among the four systems for (A) CNTL, (B) NoAlt, and (C) NoArgo, averaged over the whole period of 2020

RMSE of

Normalized RMSE

 $\frac{10000}{2000} \frac{1}{100} \frac{2021}{2000} \frac{1}{100} \frac{1}{100} \frac{2021}{100} \frac{1}{100} \frac{$

Normalized RMSE

Figure: Vertical profiles of global mean RMSEs of temperature (units in degree C) and salinity (units in PSU) for CNTL, NoAlt, and NoArgo

RMSE of

Assimilating Argo data reduces TS RMSE, with a stronger effect in FOAM
In MOVE-G3, Argo data has a greater impact on salinity than on temperature
The impact of altimetry data
depends on the system, with minimal effect in JCOPE-FGO

Summary

• SynObs promotes collaboration among various national prediction centers and observation groups to effectively design ocean observation networks.

• SynObs Flagship OSEs aim to comprehensively evaluate the impact of various observation platforms

• Impacts of individual observation platform estimated by OSE were generally consistent across systems, but results showed some dependency on horizontal mecalution of medals

Check for updates

OPEN ACCESS

EDITED BY John Roland Moisan, National Aeronautics and Space Administration (NASA), United States

REVIEWED BY Han Zhang, Ministry of Natural Resources, China Andrea Storto, National Research Council (CNR), Italy

*correspondence Yosuke Fujii ⊠yfujii@mri-jma.go.jp The international multi-system OSEs/OSSEs by the UN Ocean Decade Project SynObs and its early results

Yosuke Fujii^{1,2*}, Elisabeth Remy³, Magdalena Alonso Balmaseda⁴, Shoichiro Kido⁵, Jennifer Waters⁶, K. Andrew Peterson⁷, Gregory C. Smith⁷, Ichiro Ishikawa¹ and Kamel Chikhar⁸

¹Department of Atmosphere, Ocean and Earth System Modeling Research, Meteorological Research

2021 United Nations Decade 2030 of Ocean Science for Sustainable Develop

ADVANCING OCEAN PREDICTION SCIENCE FOR SOCIETAL BENEFITS

Thank you!

EU

@ceanobs

INTERNATIONAL OCEAN GOVERNANCE

