

Validation and assimilation of satellite sea surface temperature to characterize sub-mesoscale features in assimilative ocean and coupled earth system prediction models

Barron, Charlie N.¹, Robert W. Helber¹, Jean-François Cayula², Joseph M. D'Addezio¹, Jackie C. May¹, Bradley J. Sciacca³, and Scott R. Smith¹

¹ U.S. Naval Research Laboratory, Stennis Space Center, MS, USA
² Peraton, Inc., Stennis Space Center, MS, USA
³ American Society for Engineering Education, Washington, DC, USA

2024 Ocean Predict Symposium Paris, France

Distribution Statement A: Approved for public release. Distribution is unlimited.

18-24 November 2024

Use of SST in assimilative ocean and coupled earth system prediction models

Sea Surface Temperature (SST) is an essential variable for Navy ocean forecasts.

- direct interest in temperature
- effects on sensor performance
- correlation with subsurface conditions
- heat flux between the ocean/atmosphere

Observations of SST are used to evaluate and correct ocean forecasts

What are the sources of the observations?

Observation of SST: geostationary IR satellites

NAVOCEANO SST from geostationary IR satellites: GOES-16, GOES-18, Himawari-9; legacy EWSG-1

Provide near-continuous global SST coverage except for polar regions; IR is obscured by clouds

Observation of SST: polar-orbiting IR satellites

NAVOCEANO SST from polar-orbiting IR satellites: SNPP, NOAA-20 VIIRS; Metop-B, Metop-C AVHRR/3

Polar-orbiting IR SST orbits **NOAA-20** US Coverage supported by multi-national GHRSST collaboration **Metop-B** EU Polar-orbiting IR satellites use 2-3 IR channels to measure SST Nadir footprint 750m-1km SST refresh ~12 hours

per satellite plus overlap

Single-orbit combined orbit passes from 5 satellites:

S/NPP (US) NOAA-20 (US) **NOAA-21 (US)** Metop-B (EU) Metop-C (EU)

Provide global SST coverage including polar regions; IR is obscured by clouds

SST Retrievals: Validation relative to buoys

Fixed and Drifting Buoys

Monitors accuracy of geostationary satellite SST retrieval

Observation of SST: ~6600 satellite SST observations per buoy SST

Of the surface SST observations available for assimilation

- fixed buoys, drifting buoys
 - \circ calibration and validation
 - assimilation may be locally important in cloudy, nearshore areas
- engine room intake, hull sensors, bucket SST
 - Insufficient accuracy unless from source specifically calibrated and maintained

These observations were available on 4 July 2023. * estimated H-9, G-18 as = to G-16 for this brief

	SST source	count	ratio to all buoys
hond	drifting buoy	29440	0.40
	fixed buoy	43932	0.60
satellite	all sat SST w/ H-9, G-18*	485938840	6623
	AMSR-2	4804761	65
	EWS-G1	83191923	1134
	GOES-16	77084974	1051
	Metop-C	20220513	276
	MSG-3	12271525	167
	Sentinel 3A+3B	37670243	513
	S/NPP + NOAA 20	96524953	1316

For every buoy SST observation there are ~6600 satellite SST observations

3DVAR variational data assimilation

$$J(x) = (x - x_b)^T B^{-1} (x - x_b) + (y - Hx)^T R^{-1} (y - Hx)$$

B: background error covarianceR: observation error covariance $x_b:$ model state (background)y: observation stateH: observation operator \blacksquare

 $\nabla_x J(x_a) = 0$

 $3\mathsf{DVAR}$ $x_a = x_b + (BH^T)(HBH^T + R)^{-1}(y - Hx_b)$

 x_a : called the analysis, the updated model field ($y - Hx_b$): called the innovation (BH^T)($HBH^T + R$)⁻¹($y - Hx_b$): called the increment Variational data assimilation starts with a cost function.

We wish to minimize the cost function, such that any input state x returns the least value.

This minimization produces the formulation of data assimilation called 3D Variational data assimilation (3DVAR).

The inversion $(BH^T)(HBH^T + R)^{-1}$ can become ill conditioned when observation errors that are too correlated

Present solution: Average data into **super observations** until the effective observation spacing is larger than the length scale in the error covariance

SST Assimilation: present system using super observations

U.S. NAVAL RESEARCH

Present system drastically reduces original SST fidelity; work to better account for smaller-scales in space, time

SST Assimilation: use OSSE to evaluate assimilation alternatives (complete sampling)

SST assimilation: Subdomain to examine DA increments (update to background)

SST assimilation: Multiscale DA increments (correction added to forecast background)

SST assimilation: Multiscale DA of SST offers clear benefit in the upper 100 m (see D'Addezio, Carrier, Souopgui, Iversen)

Evaluate error (OSSE variant) – (Nature) over whole domain Jan. 1 - Jun. 30, 2016 OSSE variants:

- Free Run
- SS-Altim •
- SS-Altim+SWOT
- Above + MS-SST •

All variants but free run also assimilate SST in the single-scale step

SST is the only info source for the second step in multiscale

Use of SST in assimilative ocean and coupled earth system prediction models

Summary:

- Predicting Sea Surface Temperature (SST) is important for estimating near-surface and subsurface conditions, system performance, and forecasts of future air/sea conditions.
- Observations of SST are used to evaluate and correct ocean forecasts.
- Satellites provide the overwhelming majority of SST observations.
- Present operational assimilation methodologies combine these data into super-observations to avoid ill-conditioning due to correlated errors (too close in space).
- Small-scale information is lost in using super-observations.
- New techniques are in development to better retain small-scale information
 - Multi-scale (D'Addezio, Carrier, Iversen)
 - Wavelet (Sciacca)

Employment Opportunities

Ocean Dynamics and Prediction Branch

U.S. Naval Research Laboratory Stennis Space Center, MS

Immediate Positions Available

- **Postdoctoral Fellowships** Annual 2024 salary is \$82,830. Renewable up to 3 years. *Benefits: Medical, Dental, Vision, Life*
- Permanent Researchers Annual salary for full time federal civilian positions ranges from \$80,000 to \$150,000. Benefits: Medical, Dental, Vision, Life, Pension, Retirement
- Applicants must be a US citizen or US permanent residents at time of application
- Variable work schedules with partial telework options (No remote work)
- NRL is an equal opportunity employer

Send your resume or any questions to: 7320jobs@nrlssc.navy.mil

