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3.1 RMSD between the satellite SSS and in situ SSS using the sss_uncertainty

• The preliminary result shows that the root-mean-square difference (RMSD) of the SSS 
(Jan.-Dec. 2021) over the study area (Figure 1) is 0.116207 practical salinity unit (psu). 

Extraction & Transformation (Python libraries/Spyder IDE:                                                                     ).

Cleaning (Python libraries/the IDE:        Null Values & Outliers; RStudio: Monthly Mean of data). 

Partitioning into Training (Jan. 2016-Dec. 2020) and Validation (Jan.-Dec. 2021) datasets.

Determination of SMAP SSS error with sss_uncertainty – Jan.-Dec 2021 (MS Excel: RMSD).

The risks of upstream seawater intrusion from coastal zones to the environment, food security and people’s health, 
particularly in terms of evidence-based threats to optimum yield of sensitive plants such as paddy rice and horticultural 
crops (CGIAR-RCSA, 2016); and drinking water supply (Sneath, 2023), which are crucial for sustaining some 37% of 
the world’s population living within 100 km of the coast (UNEP, 2024), are gradually becoming serious issues that 
require proactive environmental monitoring and good modelling approaches. 

However, the temporal resolutions of relevant contemporary all-weather satellites that detect sea surface salinity (SSS) 
are unable to support real-time applications that can provide the required early warning information for mitigating such 
risks (Ajibola-James et al., 2023). The relatively low spatial resolution of the most relevant in situ salinity measurement 
by Argo floats (Kramer, 2002) exacerbated by their relatively scanty deployment along coastal zones; and the 
inaccurate salinity measurements that drift to higher values produced by over 60% of the floats between 2015 and 2019 
make them relatively inefficient for mitigating such risks (Liu et al., 2024), particularly at a regional scale. 

Our current practical knowledge of the efficiency of machine learning (ML) least absolute shrinkage and selection 
operator (LASSO) regression models built with relatively sparse all-weather satellite time-series datasets for achieving 
relatively accurate predictor variable selection, collinearity detection, and high SSS prediction accuracy that can provide 
early warning information for mitigating such risks is still limited. Consequently, the objectives for this study are to: 
(i) determine the best parameter combination (PC) values for a relatively accurate ML LASSO regression model; 
(ii) identify the best penalty and algorithm for constructing a relatively accurate L0-regularized regression (L0) 

model, and determine and validate potential predictor variables (PPVs) importance, and collinearity; and 
(iii) predict and validate monthly SSS values for 12 months ahead (Jan.-Dec. 2021).

2.0 Methods

3.0 Results

3.3 Determination of PPVs importance and collinearity

4.0 Discussions

An approach for good modelling and forecasting of sea surface salinity in a coastal zone using 

machine learning LASSO regression models built with sparse satellite time-series datasets

1.0 Introduction

2.2 Data preparation

.nc4 and .nc
Excel

.CSV .CSV .CSV

Figure 1: Map of the study area showing the 278 data points (in red) 

of each variable observation, sss, ws, hws, sst, adt, sla and precip 

(Jan. 2016-Dec. 2020); sss and sss_uncertainty (Jan.-Dec. 2021)

Source of basemap: Anyikwa & Martinez (2012) 

Modification: Authors (2024)

Sea surface salinity (sss) 

SSS error (sss_uncertainty)

Wind speed (ws)

High wind speed (hws) [via HYCOM_sss]

Sea surface temperature (sst) 

(JPL, 2020) *Soil Moisture Active Passive 

NASA’s SMAP*

PCs Values PPVs R2 RMSE 

(psu)

MAE 

(psu)

MAPE (%) PCs Performance 

Position

LB:36, H:36 ws, hws, sst, adt, sla, precip 0.55423 0.79365 0.57143 1.76698 6th

LB:36, H:24 ws, hws, sst, adt, sla, precip 0.56596 0.78314 0.56587 1.74519 5th

LB:36, H:12 ws, hws, sst, adt, sla, precip 0.59804 0.75364 0.55023 1.69723 4th

LB:24, H:24 ws, hws, sst, adt, sla, precip 0.73891 0.58156 0.40802 1.25989 2nd

LB:24, H:12 ws, hws, sst, adt, sla, precip 0.77123 0.54437 0.36248 1.12097 1st

LB:12, H:12 ws, hws, sst, adt, sla, precip 0.60541 0.68216 0.53759 1.65196 3rd

Table 2: Performance of the 6 possible LB and H PCs in the time series forecasting of SSS with the ML LASSO models

Table 3: Determination of PPVs importance and collinearity using the L0 models with L0L2 & CD-PSI 

L0 Maximum 

Support Size

PPVs Importance in 

Descending Order

Coefficient Intercept

maxSuppSize = 6 V1 (ws)

V2 (hws)

V5 (sla)

V4 (adt)

V3 (sst)

V6 (precip)

0.06453669

-0.03312278

-1.45196918

-1.45194054

-0.03004772

0.07919975

42.91275984

maxSuppSize = 5 V1 (ws)

V2 (hws)

V5 (sla)

V4 (adt)

V3 (sst)

0.06456058

-0.03330373

-1.44796925

-1.44796835

-0.02981000

42.86146292

maxSuppSize = 4 V1 (ws)

V2 (hws)

V5 (sla)

V4 (adt)

0.14046467

-0.06784094

-2.72801923

-2.72839010

34.52565342

maxSuppSize = 3 V1 (ws)

V2 (hws)

V5 (sla)

0.3885072

-0.1784569

-6.2265858

33.1928511

maxSuppSize = 2 V1 (ws)

V2 (hws)

0.5631397

-0.2651062

32.5008548

maxSuppSize = 1 V1 (ws) 0.07405407 32.68467276

Perfect collinearity 
and 

relative importance 
(RI) detected

Perfect collinearity 
and RI detected

Perfect collinearity
and RI Detected

Most important 
predictors selected
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Experiment PPVs R2 RMSE PPVs Performance 

Position

A V1 (ws), V2 (hws), V5 (sla)

V4 (adt), V3 (sst), V6 (precip)

0.77123

 

0.5443722 6th

B V1 (ws), V2 (hws), V5 (sla)

V4 (adt), V3 (sst)

0.8189632

 

0.4842613 5th

C V1 (ws), V2 (hws), V5 (sla)

V4 (adt)

0.8239762

 

0.4775096 1st

D V1 (ws), V2 (hws), V5 (sla) 0.8239762 0.4775096 1st

E V1 (ws), V2 (hws), V4 (adt) 0.8239761 0.4775098 2nd

F V1 (ws), V2 (hws) 0.8223169 0.4797549 3rd

G V1 (ws) 0.8216164 0.4806997 4th

2.3 Parameterization and ML LASSO regression model development in RStudio

• Identified the possible lookback (LB) & h-step-ahead (H) PCs using some data in Table1.

• Built 6 ML models with ForecastML & determined the best LB & H with R2 & MAPE.

2.4 Determination of PPVs importance and collinearity in RStudio

• Adopted L0L2 penalty, and Cyclic Coordinate Descent & Partial Swap-Inescapable 
(CD-PSI) algorithm for building 6 L0 models with L0Learn (Hazimeh & Mazumder, 2020).

2.5 Experimental validation of PPVs importance and collinearity in RStudio

• Built 7 ML LASSO regression models with ForecastML using the best PC and 7 variants 
of PPVs to forecast monthly SSS (Jan.-Dec. 2021) in a series of experiments A to G.

2.6 Prediction of SSS and validation of the SSS forecast accuracy in RStudio

• Adopted the best LASSO model (highest R2) for the SSS prediction (Jan.-Dec. 2021).

• Validated the predicted monthly SSS with the satellite observed monthly SSS in 2021 
over the coast by computing the RMSE and MAPE with MLmetrics library.

3.2 Parameterization of ML LASSO regression models

Table 4: Evidence-based validation of PPVs importance and collinearity with ML LASSO models

3.4 Experimental validation of PPVs importance and collinearity

Perfect 
collinearity
validated

Most 
important 
predictors
validated 
with the

BEST MODEL

5.0 Conclusion
As demonstrated by the results of this study, a good approach for using relatively sparse satellite time-
series datasets of 60 epochs (monthly scale) to build a relatively accurate ML LASSO regression model 
for useful SSS forecasting should begin with rigorous supervised-automatic deletion of observation 
records with null values and outliers, followed by unbiased selection of appropriate parameter values, 
evidence-based identification of important predictor variables and collinearity assessment. This good 
modelling and forecasting approach can be adopted by the stakeholders for replicating the 
relatively high SSS prediction accuracy to provide useful early warning information for proactive 
monitoring and mitigation of the risks of upstream seawater intrusion from coastal zones, 
particularly to people’s health (drinking water supply) and food security (crops’ yield) in coastal areas.
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Figure 2: Monthly SSS forecast plot (Jan.-Dec. 

2021) with the best ML LASSO model

Figure 3: Bar chart of the SSS forecast and SMAP 
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3.5 Prediction of SSS and validation of the SSS forecast accuracy

The result of the RMSD (0.12 psu) between the satellite SSS and in situ SSS exceeds the SMAP satellite 
mission’s accuracy of 0.2 psu by a substantial margin of about 41.9%. This implies credible validation 
data for the SSS forecast; and credible data preparation method that involved rigorous supervised-
automatic deletion of observation records with null values, and outliers induced by the radio frequency 
interference (RFI) and land contamination. The results of the evidence-based approach for determining 
and validating the best PC (Table 2), the most important PPVs combination, and collinearity (Table 3 & 4), 
which produced the most accurate ML LASSO model (R2 = 0.8239762) (Table 4) that predicted the 
SSS (Jan.-Dec. 2021) at a relatively high accuracy level (Figure 2), RMSE of 0.74 psu and MAPE of 
1.90%, about 5 times less than 10% limit (Lewis, 1982) (Figure 3) have the following implications:) 
values.

❑ Accuracy of such a ML LASSO regression model depends largely on evidence-based 

success of parameter values selection, most important PPVs selection, collinearity detection 

tasks;  evidence-based accuracy of the algorithms involved in each of the tasks; and the 

accuracy of satellite data utilized for the model building and forecast values validation.

❑ L0-regularized regression models with L0L2 and CD-PSI are relatively efficient for PPVs’ RI detection, 

most important PPVs selection and collinearity detection. 

❑ Performance of such a ML LASSO model can be optimized with such L0-regularized model.

❑ The results are consistent with the claim of Hazimeh & Mazumder (2020) on L0 performance.

Absolute dynamic topography (adt) 

Sea level anomaly (sla) 

(CCCS, Undated)

Precipitation (precip)

(Huffman, 2019)

Copernicus & Earhdata

Table 1: Datasets utilized for the study

2.1 All-weather satellite and ancillary datasets acquisition
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