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Is Oceanography

a “big data”
science?

Yes & No ...
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an eclectic, patchy, heterogeneous
observing system @

Two incomplete
knowledge

reservoirs numerical models
that require

!

uncertain
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Parameter &

state estimation

The data assimilation /[ inverse
method is learning from ...

e aset of usually sparse, heterogeneous
observations

e ... AND known (albeit uncertain)
physics/dynamics,

e ... by solving a gigantic least-squares
model-data misfit minimization



What do we mean by
“Learning’”?



Physical model




Learn model initial conditions

Find best initial conditions
that will produce optimal
forecast...

Physical model

FORECAST@ T >0
V)

The filtering
problem of optimal
estimation & control




Learn model initial conditions

Find best initial conditions
that will produce optimal
forecast...

The filtering
problem of optimal
estimation & control

Initialization for
prediction/extrapolation
as practiced in short-term

weather & ocean
prediction




Learn model initial conditions

Find best initial conditions
that will produce optimal
forecast...

The filtering
problem of optimal
estimation & control

Initialization for
prediction/extrapolation
as practiced in

interannual to
decadal prediction

Absolute temperature

observations -
uninitialized runs -y’
raw initialized hindcasts
- = Dbias—corrected hindcasts
g Meehl et al.
— ‘ =i - model drifts BAMS (2014)
" = mean drift
1960 1970 1980 1990 2000 2010 2020



Learn model time-evolving state

Find model inputs (in red)
that produce the best
dynamically consistent state

The smoothing
problem of optimal
estimation & control




Learn model time-evolving state

Find model inputs (in red)
that produce the best
dynamically consistent state

The smoothing
problem of optimal
estimation & control

State & parameter estimation for:
* Interpolation/reconstruction
 (transient calibration)




Learn model parameters

Physical model has many

empirical parameters:

e constitutive laws Param. Param. Param.

* subgrid-scale
parameterization schemes Physical model

scheme 1 scheme i schemen




Learn model parameters

Physical model has many

empirical parameters:

* constitutive laws

* subgrid-scale
parameterization schemes

parameter estimation
using observations is
essential

Param.
scheme 1

Param.
scheme i

Physical model

Param.
schemen

THE ART AND SCIENCE OF
CLIMATE MODEL TUNING

FREDERIC HOURDIN, THORSTEN MAURITSEN, ANDREW GETTELMAN, JEAN-CHRISTOPHE GOLAZ,

VENKATRAMANI BALAJI, QINGYUN DuaN, Doris FoLini, DuoyiNg Ji, DanieL KLockg, YUN QIaN,
FLorIAN RAUSER, CATHERINE Rio, LORENZO ToMAssINI, MASAHIRO VWATANABE, AND DANIEL VWILLIAMSON

We survey the rationale and diversity of approaches for tuning, a fundamental aspect of

climate modeling, which should be more systematically documented and taken into account

In multimodel analysis.

BAMS




Learn surrogate (e.g., NN) of model’s parameterization scheme

Parameterization scheme(s)
is replaced by neural network

Neural Network

NN is trained on high- eax  forscheme#
fidelity simulation Physical model
data which resolve
scales to be
parameterized




Learn surrogate (e.g., NN) of model’s parameterization scheme

Parameterization scheme(s)
is replaced by neural network

Neural Network

NN is trained on high- cxs forscheme#i
fidelity simulation Physical model
data which resolve

scales to be
parameterized

Hidden Layers Output Layer
(number of grid points) (2 layers, (2 nodes)
8 nodes each)

| .
IV.S|=V-(ud —ud) =

a priori [ offline learning

Frezat et al. (2019), Zanna & Bolton (2021)




Learn hybrid physical/surrogate (NN) model

Parameterization scheme(s)
is replaced by neural network

Neural Network

Training of the NN is ras  forschemes
part of “training” of Physical model
the physical model
on state variables




Learn hybrid physical/surrogate (NN) model

Parameterization scheme(s)
is replaced by neural network

Neural Network

Training of the NN is ras  forschemes
part of “training” of Physical model
the physical model
on state variables

a posteriori [/ full-model
[ online [ end-to-end
learning




Learn surrogate (e.g., NN) of the entire physical model

Physical model is replaced
entirely by surrogate model,
e.g., neural network (NN):

purely data-driven learning

Weights of neural
network trained on
simulated model states, either
* high-fidelity models
or
* reanalyses




A key unifying computational framework of “learning from data”

Gradient-based optimization: 7@

3~.(model; — data; )*

e inversion (physical models)

— seek uncertain input /

control variables / _.:_-_j-_--;:___:.-::&
parameters \- . —
e training (neural networks) .I/: (2 5 slale space
— seek uncertain weights of —
NN representation J— | /\- Te_—7
= ‘}\ )y
Adjoint / backpropagation =~ X /ﬁ' | @ )
essential tool for computing (i, 1) T
---------------------------------------------------------------- = control space

high-dimensional gradients! g Z®» g a



Full-model Can we integrate the

learning

surrogate model training
within full-model calibration




An end-to-end adjoint enables full-model calibration & initialization

Surface boundary condition / air-sea flux param.

Initial

cond. surrogate surrogate surrogate
o model 1 model i model n

Here: use of full-model differentiable programming to

* replace parts of model by appropriate surrogates

e use all available observations to train/calibrate all uncertain variables
* combinesinverse modeling and ML in end-to-end learning

----'

relies on general-purpose automatic differentiation (AD)



? E] O @ djdearth.github.io

RESEARCH RESOURCES TEAM NEWS PUBLICATION.

Cyberinfrastructure for Sustained

Scientific Innovation (CSSI) NSF CS5I: DJ4Earth
Convergence of Bayesian inverse
httpsy/DJ4Earth.github.io methods and scientific machine learning

through universal differentiable programming




Since 2023 the idea of differentiable programming has taken off ...

Geosci. Model Dev., 16, 3123-3135, 2023
https://doi.org/10.5194/gmd-16-3123-2023

© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Differentiable programming for Earth system modeling

Maximilian Gelbrecht'2, Alistair White!-2, Sebastian Bathiany'-?, and Niklas Boers'->>

Earth System Modelling, School of Engineering and Design, Technical University of Munich, Munich, Germany
ZPotsdam Institute for Climate Impact Research, Potsdam, Germany
3Department of Mathematics and Global Systems Institute, University of Exeter, Exeter, UK




Since 2023 the idea of differentiable programming has taken off ...

Geosci. Model Dev., 16, 3123-3135, 2023
https://doi.org/10.5194/gmd-16-3123-2023

© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Maximilian Gelbrecht'-, Alistair White'-, Sebasti
Earth System Modelling, School of Engineering and D




Since 2023 the idea of differentiable programming has taken off ...




Since 2023 the idea of differentiable programming has taken off ...

Article

Neural general circulation models for
/| weather and climate

—| | https://doi.org/101038/541586-024-07744-y  Dmitrii Kochkov'¢*, Janni Yuval'®*, lan Langmore'?, Peter Norgaard'¢, Jamie Smith'S,
Received: 13 November 2023 Griffin Mooers', Milan Kléwer?, James Lottes', Stephan Rasp', Peter Diiben?, Sam Hatfield®,
- Peter Battaglia®, Alvaro Sanchez-Gonzalez*, Matthew Willson?, Michael P. Brenner'® &
Accepted: 15 June 2024 Stephan Hoyer'®*

Published online: 22 July 2024




Differentiating a GPU-enabled

climate model in Julia D’4Eﬂ 'th
Harness next-gen.

compute architecture

Building on CliMA

CLIMATE MODELING
ALLIANCE

JULIA: COME FOR THE
SYNTAX, STAY FUR THE SPEED

Researchers o fenﬁ nd themselve. d ng algoril me programming lan;
havero rewrite them in a faster one. Anup-a d comi g[ nguage could be h w

A NEW APPROACH TO CLIMATE
MODELING

1 AUGUST 2019 | VOL 572 | NATURE

SIAM REVIEW
Vol. 59, No. I, pp. 65-98

Julia: A Fresh Approach to
Numerical Computing®




ClimaOcean.jl:
Ocean model component of the Climate Model Alliance (CliMA) model

JESS

The Journal of Open Source Software

@ Finite volume, rotating, stratified fluids
model for geophysical fluid dynamics (GFD).
Oceananigans.jl: Fast and friendly geophysical fluid @® \Written from scratch in Julia
dynamics on GPUs @® Multiple simulation options.
_ _ o _ @ CPU and CPU via kernel abstractions
Ali Ramadhan’, Gregory LeClaire Wagner', Chris Hill', Jean-Michel . . . . .
Campin!, Valentin Churavy!, Tim Besard?, Andre Souza!, Alan . Parallelize USIng MPI]I and multl-threadlng

Edelman!, Raffaele Ferrari', and John Marshall!

1 Massachusetts Institute of Technology 2 Julia Computing, Inc.
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https://github.com/clima/Oceananigans.jl




Differentiable programming for full-model / end-to-end learning

DJ4€arth
Differentiating GPU-enabled ocean model
in Julia via the AD tool Enzyme.jl ©) CliMA

Oceananigans.jl
(Silvestri et al., arXiv, 2024)

a)

"Op_timize“- | , Optlmlze ‘

Enzyme @[> 2

l/ , \ 313
CodeGen

Moses, Churavy, etal., SC’21 8




Three initial Earth system applications DJAEarth

Ocean Seaice Ice sheets

S. Williamson J. Kump N. Loose S. Silvestri G. Wagner C. Hill M. Morlighem C. Gong
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e Bringing together concepts from ...
— ... big data science & sparse data science
— ...computer science & computational science
— ...scientific machine learning & simulation-based science
e Sensitivity/gradient information is a powerful ingredient; obtained via
— differentiable programming
— general-purpose automatic differentiation (AD)
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