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Conclusions

As part of the Scale-Aware Sea Ice Project (SASIP 2) a new sea ice model, called 
neXtSIMDG, is being developed. One of its novel features is that it uses a discontinuous 
Galerkin (DG) solver for the ice dynamics. It is envisaged that the model will be 
endowed with a data assimilation (DA) system. This system will use observations to 
bring the model state closer to the truth.  In this work we will look whether it is 
possible to exploit the particular structure of a DG model to improve DA performance. 
In particular, we try to answer to following three questions:

• Is it possible to assimilate multiple observations per grid cell in a Galerkin model, 

thus reducing the need for the formation of superobservations from dense 

(satellite) observation sets?

• Can DA also improve the estimate of the spatial derivative of the model fields in 

Galerkin models?

• Can the polynomial basis of the DG model be used to develop a scale-dependent  

ensemble localisation scheme?

Experimental setup
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• In a DG-model multiple (~5) observations can be assimilated effectively per grid. 
Especially, if the error spectrum is red. 

• Assimilating multiple observations per grid cell does not improve the derivatives of 
the field. 

• When a Legendre basis is used, the DG coefficients can be used to succesfully
achieve scale-dependent localisation at little additional cost. 

A synthetic 1D twin experiment in a periodic domain of length L=8000 km is employed 
to answer the research questions. Following Liu & Rabier2, an artificial truth, artificial 
observations and 40 ensemble members are generated from a given spectrum. These 
members are projected on DG spaces of different orders (yellow in Fig. 1). These 
projections are then interpolated to observation locations. As reference, the members 
are also evaluated on a 79-points (blue in Fig. 1). Linear interpolation is then used to 
interpolate from the points to the observation locations. The latter setup is referred to as 
the ‘nodal’ case. Observations are assimilated by ETKF3 using the ensemble to estimate 
the forecast covariance. 

Figure 1:  procedure to generate the artificial truth, artificial observations, ensembles 
and analysis. 
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• A discontinuous Galerkin model approximates the solution in grid cell n as 
ȁ 𝑢(𝑥, 𝑡) 𝑛 = σ𝑘 𝑐𝑘𝑛 𝑡  𝑝𝑘 ∘ 𝜑𝑛(𝑥)

with ȁ𝑢(𝑥, 𝑡) 𝑛 the possible multivalued model solution restricted to grid cell n, pk the 
kth basis polynomial, φn a coordinate transform from cell n to the domain of the 
polynomials, ckn the Galerkin coefficient for the cell and polynomial. 

• Different polynomial families can be used for the 𝑝𝑘 . E.g. Legendre or Lagrange 
polynomials. 

• ODEs for ckn can be found by inserting the expression for u in              

𝐷𝑛׬
𝑝𝑘 ∘ 𝜑𝑛 𝑥

𝜕𝑨 𝑢 𝑥,𝑡 ,𝑡

𝜕𝑡
− 𝑳 𝑢 𝑥, 𝑡 , 𝑡  𝑑𝑥 = 0

for all n and k and solving the finite-dimensional system  thus generated.

The spatial root-mean square error (RMSE) between the ensemble mean and the artificial 
truth before/after DA is calculated for different number of observations per grid cell. Results 
in Fig. 2 and Fig. 3 show that: 

• Assimilation of high-density observations is more effective if the error spectrum is 
redder (Fig. 2a vs. Fig. 3a). 

• Assimilation of high-density observations benefits from the use of high-order DG 
schemes (Fig. 2a). Benefits of going to higher-order are less pronounced when the error 
spectrum is redder (Fig. 3a). 

• Use of higher-order DG schemes in DA does not improve the derivatives of the model 
field (Fig. 2b,c and 3b,c). 

Assimilated observation density

Figure 2: RMS error ratio as function of the 
observation density for different DG orders 
with a red k-4 error spectrum. 

Figure 3: as figure 2 but now for a pink k-1 
error spectrum. 

Scale-dependent localisation

When the covariance (Fig. 4a,b) is estimated from a small number of ensemble 
members (16) spurious correlations occur (Fig. 4c,d).  To remove these spurious 
correlations, covariances are multiplied with a localisation factor (Fig. 5) calculated 
using the optimal localisation4 approach.

• The covariances between higher-order DG coefficients are weak are near-
diagonal (Fig. 4b). 

• Length scales for the localisation factors are smaller for higher-order coefficients 
than for the 0th-order  coefficient (Fig. 5).  This because the DG polynomials act as 
a band-pass filter (Fig. 6).  

• Scale independent localisation completely removes genuine negative correlations 
(Fig. 4e) whereas with scale dependent localisation part of it remains (Fig. 4f).

• Scale dependent approach results in smaller matrix error than scale independent 
localisation (not shown). 

Figure 6: (a) Legendre polynomials of 
different orders in a grid cell. (b) Spectrum of 
the different Legendre polynomials as 
function of the wavenumber. 
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Figure 4: (a,b) 
true covariance; 
(c,d) estimate of 
the same 
covariance from 
16 ensemble 
members; (e,f) 
same estimate 
after 
localisation. (top 
row) covariance 
between points 
on a 1D grid; 
(bottom row) 
covariance 
between DG 
coefficients. 

Figure 5: localisation factors 
as function of the distance 
between grid cells for non-
scale dependent 
localisation, (a) between 0th-
order and (b) 0th,1th-order 
DG coefficients.
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