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1. User needs and scientific challenges
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1.1 User needs - overview

Use Category Example Cases Components Forecasts / 
Past time-series

Coastal Flood Coastal Flood
Coastal Boundary Conditions

O, W, A Both

Marine Safety and NetZero Offshore Operations
Safe/Efficient Navigation
Beach safety

O, W, A Both

Marine Sourced Energy Offshore Renewable 
Energy Generation
Ambient Water Characteristics

O, W, BGC, A Both

Marine Accident Response Search and Rescue
Marine Pollution Response
Coastal Boundary Conditions

O, W, BGC, A Both (short-
term past)

Marine Environment Monitoring Marine Ecosystem Health Monitoring
Climate Change Physical 
Impacts Monitoring
SST/Sea-Ice Reference Dataset

O, W, BGC, A Past

(Coupled) Weather, Marine and 
Climate Predictions

Weather and Seasonal Forecasts
Marine heatwave forecasts
Coastal Boundary Conditions

O, W, A Both

Use case examples

• High spatial and temporal resolution needed to resolve 

the main features of interest.

• High accuracy.

• Uncertainty quantification and probabilistic forecasts.

• Many user cases require consistent coupled forecasts of 

ocean (O), waves (W), atmosphere (A) (and 

biogeochemistry (BGC)) .

• Many users need timely data with frequent updates.

• Requirement for consistent forecast and reanalysis, 

e.g. design and operations, seasonal forecast calibration.
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• Increasing resolution to resolve key features

• Example from coupled ocean/wave forecasting system at 
1.5 km resolution 

• Impact on internal tides, topographic steering, coastline 
effects and resolving eddies

1.1 User needs – high resolution

Eddies and
internal 
waves in SW 
approaches, 
impact on 
wave field

From ~7km -> 1.5 km resolution
Increased structure and intensity in 

surface current fields
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Any downstream application and cost-

benefit analyses benefits from 

probabilistic predictions

Example: Probability of occurrence of 

sound ducts from ensemble ocean 

predictions with stochastic physics

Courtesy of Drew Peterson (ECCC)

1.1 User needs – uncertainty quantification and probabilistic forecasting
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1.1 User needs – consistent earth system predictions

Berthou et al., 2024

Regional atmosphere/ocean coupled impacts:
o Atmospheric conditions (persistent anticyclonic conditions) generated a marine 

heatwave (MHW) in the Northwest European Shelf Seas in June 2023.
o Coupled regional environmental prediction system including ocean, waves, 

atmosphere, land components used to understand the development of the 
MHW.

o UK broke its record June monthly temperature by +0.9 °C, of which 0.6 °C came 
from the feedback of the MHW on the atmosphere temperature over land.

o Regional NWP quality improved using time-varying SSTs from regional ocean 
forecasting system even for short 36 h forecasts, during the MHW.

MHW/SST anomalies in June 2023

Impact of MHW on 1.5 m air temperature
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1.2 Challenges

Does the increase in spatial resolution always benefit the forecasting systems? 

The conundrum of the unconstrained scales (for assimilation but also validation)

From Sandery and Sakov 2017: Ocean forecasting of mesoscale 

features can deteriorate by increasing model resolution towards the 

submesoscale

From Thoppil et al. 2021: Ensemble 

forecasting greatly expands the 

prediction horizon for ocean

mesoscale variability
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1.2 Challenges

From Sandery and Sakov 2017: Ocean forecasting of mesoscale 

features can deteriorate by increasing model resolution towards the 

submesoscale

From Souopgui et al. 2020: Multi-scale 

assimilation of simulated SWOT 

observations

Does the increase in spatial resolution always benefit the forecasting systems? 

The conundrum of the unconstrained scales (for assimilation but also validation)
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Does the increase in spatial resolution always benefit the forecasting 

systems? Many "immortal" biases despite the incremental spatial refinements

1.2 Challenges

From Farneti et al., 2022: Improvements and persistent biases in the southeast tropical Atlantic 

in CMIP models
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Representation of high-frequency processes is challenging in most current analysis and forecast systems

Diurnal Cycle       Near-Inertial Oscillations

1.2 Challenges

Left: assimilation of 

diurnal SST to improve 

diurnal cycle 

representation (Storto & 

Oddo, 2019) and 

importance in forecasts 

(Salisbury et al., 2018).

Right: wave-induced 

surface stresses and 

the Coriolis-Stokes force 

necessary to represent 

near-inertial oscillations

(Rohrs et al., 2019)
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Technical challenges:

New HPC architectures (ARM, GPU, mixed, and associated parallelization paradigms)

Efficient programming languages and

the implications for academy and young 

researchers, and DTO-related

developments

1.2 Challenges

(from https://www.youtube.com/watch?v=qQXXI5QFUfw )

https://www.youtube.com/watch?v=qQXXI5QFUfw
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2. Ongoing developments and future directions

2.1 Observing systems​​ impact and design

2.2 Ocean and coupled modelling 

2.3 Ocean and coupled data assimilation 

2.4 The role of machine learning & digital twins
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2.1 Observing systems – impact and design

Various methods to assess the impact of observing systems in ocean forecasting systems:

• Observing System Experiments (OSEs)

• Existing observations are removed from the assimilation and the impact assessed. 

• Observing System Simulation Experiments (OSSEs) 

• Synthetic observations generated from a high-resolution model (nature run) and assimilated into a 
different model. 

• Used to assess impact of existing and future observing networks and to aid in observing system 
design.

• Other methods available (not covered here) include (see for example Edwards et al., 2024):

• Representers

• Array modes

• Forecast Sensitivity to Observation Impacts (FSOI).
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➢ Left panel: Assimilating satellite altimetry data reduces the uncertainty of the SSH 

fields.

➢ Right panel: The uncertainty of the SSH fields are further reduced when Argo data 

are assimilated in addition to the altimetry data. 

➢ SynObs is the Project of the United Nations

(UN) Ocean Decade under the UN Decade 

program ForeSea to seek the way to get 

maximum synergy from the combination among 

various observation platforms in ocean 

predictions.

➢ SynObs is collaborating with CLIVAR/GSOP, 

WCRP/S2S, Argo, TPOS, and UN Decade 

program “Ocean Observing Codesign” led by 

GOOS, etc.  

➢ SynObs is now promoting a coordinated OSEs

using various ocean and coupled atmosphere-

ocean prediction systems.

➢ Early results are published in the special issue 

of Frontiers in Marine Science

Difference of SSH muti-system ensemble spread calculated from OSE outputs of 
UKMO, ECCC, JMA, JAMSTEC, ECMWF.

NoAlt ー CNTL NoArgo ー CNTL

Synergistic Observing Network for Ocean Prediction (SynObs) 

2.1 Observing systems – impact and design

Fujii et al., 2024
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2.1 Observing systems – impact of SWOT using OSEs

SWOT data available in its 21-day repeat orbit since late July 2023.

SLA obs from nadir and SWOT altimeters

-1.0 1.0
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2.1 Observing systems – impact of SWOT using OSEs

Impact on SLA error variance in MOI system
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2.1 Observing systems – future altimeter constellation OSSEs
• Assessing the impact of two possible future constellations for Sentinal-3 Next Generation:

• 12 nadir altimeters

• 2 wide swath altimeters (WiSA)

• OSSEs using the global Met Office system and the MOI system, both at 1/12° resolution.

1 day
2 WiSA

1 day
12 nadir

5 days
12 nadir

5 days
2 WiSA

Zoom of obs coverage in Gulf Stream region

King et al., 2024
Benkiran et al., 2024

MetO SSH RMSE MetO zonal velocity RMSE

MOI error variance (compared to nature run) 
• Both constellations resulted in large improvements in 

SSH and surface velocities. 

• Met Office system benefitted more from the 12-nadir 
constellation

• MOI benefitted more from the 2-WiSA constellation.
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2.1 Observing systems – future altimeter constellation OSSEs

• Results on previous slide were from OSSEs where the WiSA observation errors had no correlated 
component.

• Including correlated observation errors (without representing it effectively in the DA) led 
to degradations in the surface currents.

• We therefore need quick pre-processing of WiSA data to remove correlated errors, and/or deal with 
them directly in the DA.

• ESA are now planning that S3-NG will have 2 WiSAs (and nadir altimeters).

• Need to prepare OOFS to make the most of this type of data - make good use of SWOT while it’s 
flying to improve its assimilation.

King et al., 2024

Sentinel-3 NG-TOPO concept:

• Constellation of 2 large 

satellites with ka-band across-

track interferometer, a la 

SWOT.

• Constellation can achieve 

global 5-day revisit with an 

effective ocean spatial 

resolution of 50 km.

• Launch early 2030s.

0

30
10

0

-10
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2.1 Observing systems – future satellite measurements of surface currents

Waters et al., 2024a and 2024b
Mirouze et al., 2024

• Particles were seeded every 1/4° 
and advected by the model surface 
velocities using OceanParcels.

• The impact of the TSCV assimilation 
on the error in particle locations 
after different advection times is 
shown.

No TSCV DA

With TSCV DA

• The ESA A-TSCV project aimed to demonstrate the potential 

impact of satellite TSCV data on OOFS and define our 
requirements.

• Two operational global ocean forecasting systems were 

developed to assimilate these data and assess impact in a 

set of coordinated OSSEs: MetO and MOI.

% change in zonal velocity RMSE as a function of depth

MetO MOI

0 30 0 15

Change in RMSE of surface zonal velocity from assimilating TSCV data (blue => reduction)

0

1500
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2.1 Observing systems – future satellite measurements of surface currents

Future directions

• Support the ODYSEA mission proposal (cf. Remy et al.) and other missions for measuring surface currents.

• Develop improved assimilation methods for this type of data, e.g.

• Developing different control variables (streamfunction and velocity potential) so that we can control the horizontal divergence 
in the velocity increments.

• Improve assimilation of high-frequency ageostrophic component (e.g. near-inertial oscillations), e.g. "rotated IAU", 4DVar.

• Improve model representation of the momentum coupling between the ocean, waves and atmosphere.

• Given large impact of assimilating these simulated velocity data, now working on global assimilation of surface-drifter derived 
velocity data.

• Should we call for an increase in surface drifter network to improve sampling of velocities and support satellite missions?

zonal velocity innovations RMS/mean % change in zonal velocity innovation RMS

• Drifter-derived velocity assimilation

• Preliminary results from one month expt.
• 6-hourly data at 15 m depth from CMEMS

• Control (black line) – standard obs assimilated

• Expt (grey line) – standard obs + drifter-derived velocities

J. Waters

control
velocity assim



In
 p

ar
tn

er
sh

ip
w

it
h

2. Ongoing developments and future directions

2.1 Observing systems​

2.2 Ocean and coupled modelling 

2.3 Ocean and coupled data assimilation 

2.4 The role of machine learning & digital twins
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2.2 Ocean and coupled modelling – improving processes in N. Atlantic through 
grid refinements (AGRIF)

Pioneering Research

Nordic Sea overflows: local terrain following 
coordinates to better resolve dense water 
cascading (results in a better lower limb of 
the AMOC).

Gulf Stream dynamics: local refinement of the mesh for a 
more realistic Gulf Stream separation and mesoscale 
dynamics. 

Mediterranean overflow: local mesh refinement (1/20°) 
combined with local terrain following coordinates to 
improve the Med overflow and mesoscale 
dynamics, significantly reducing the strong salinity biases in 
the North Atlantic. 

Absolute Sal. bias (model-obs) @ 550 m

Labrador Sea dynamics: 
local mesh refinement (1/20°) for 
better resolving mesoscale activity, 
mixed layer depth and overturning in 
the Labrador Sea.

CONTROL NEW  

CONTROL NEW  OBSERV. 

Observation
         Control
         New (with mesh refinement)

NEW

Mixed Layer Depth

CONTROLOBSERV. 

Bruciaferri et al., 2024
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2.2 Ocean and coupled modelling – stochastic schemes

• SPPT: Stochastically perturbed parametrization tendencies
• SPP: Stochastically perturbed parameters
• SKEB: Stochastic Kinetic Energy Backscatter scheme

CTR – no perturbations
ENSM – mean of perturbed expts
Solid lines – 1/4° model
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2.2 Ocean and coupled modelling – land-sea coupling

Pioneering Research

Decrease of MAE in the 

Tropical Atlantic Ocean by 

using a gravimetry-derived 

estimate of the Amazon 

river runoff (using a mass 

balance approach), being 

further improved through 

the use of ML-based bias 

correction of hydrological 

models (projects 

WAMBOR, F3O of the 

Copernicus Marine 

Service).

Mitigation of salinity bias 

(against independent in-situ) 

using interactive river runoff in a 

regional ESM NEMO+WRF+HD



In
 p

ar
tn

er
sh

ip
w

it
h

2. Ongoing developments and future directions

2.1 Observing systems​

2.2 Ocean and coupled modelling 

2.3 Ocean and coupled data assimilation 

2.4 The role of machine learning & digital twins
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2.3 Ocean and coupled data assimilation

Some examples of ongoing areas of developments:

o Representing spatially correlated observation errors in variational DA.

o Ensemble and hybrid data assimilation.

o Coupled data assimilation.

Many other areas of development not covered here, e.g. 

o 4DVar 

o High resolution and multi-resolution DA

o Improved methods for reanalysis (e.g. bias correction, simplified smoothers)
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2.3 Ocean and coupled data assimilation – observation error correlations
Correlation functions modelled with diffusion on observation mesh

Goux, Weaver, Piacentini.

Accounting for correlated observation error in variational DA

Method:

• Observation locations used to define a finite element mesh;

• Diffusion operator used to model the spatial correlations on 

that mesh.

Impact:

• Ignoring correlations in observation errors can lead to an 
analysis worse than the background;

• Observation error variance inflation can be used to avoid this 

degradation but  severely limits the positive impact of the 

observations;

• Accurately representing the observation error correlations in 

the DA reduces the analysis RMSE compared to optimal 

variance inflation;

• Accounting for observation error correlations improves the 

retrieval of small scales features from the observations.

OSTIA 

SST

IASI 

SST

SST obs error correlations with zonal/meridional length-scales of 1000 km /100 km

Representing error correlations in SWOT
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2.3 Ocean and coupled data assimilation – ensemble and hybrid DA

• In data assimilation, the background error covariance matrix, B, determines how information from 

the observations is weighted and spread (horizontally, vertically and between variables).

• Difficult to estimate B due to its dimension (O(1019) elements for global forecasting system at 1/12° 
resolution).

• In variational methods, B is usually modelled using a combination of statistical estimates from 

previous reanalysis, parameterisations, and physically-based balance relationships. 

=> Disadvantage is the lack of information about the “errors-of-the-day”.

• In ensemble methods, B is estimated using an ensemble of model states

=> Disadvantage is that limited ensemble size results in sampling noise (spurious correlations).

• Hybrid methods combine the static information from existing B models together with the ensemble 

information from an ensemble of the day. 

SST ensemble spread

SSS ensemble spread
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2.3 Ocean and coupled data assimilation – ensemble and hybrid DA

Lea et al., 2022

Hybrid-3DEnVar

T 
incs

S 
incs

Increments S/N cross-section 
in Gulf Stream (2018/09/01)
=> Ensemble gives more 
dynamically consistent 
structures

Er
ro

r/
sp

re
ad

Hybrid weight 𝛽𝑒
2

Pure EnsPure 3DVar

Er
ro

r/
sp

re
ad

SLA SST

T profile S profile

Change in RMSE of the 
ensemble mean for SLA
𝛽𝑒

2=0.8 vs pure 3DVar

𝑩𝑙
ℎ  = 1 − 𝛽𝑒

2 𝑩𝑚 + 𝛽𝑒
2 𝑩𝑙

𝑒

• Met Office global 1/4° FOAM ensemble (36 members):

o Ensemble atmospheric forcing, EDA with obs perturbations, stochastic 

model perturbations, ensemble inflation (RTPS)

• Tested the impact of different hybrid weights and ensemble inflation settings 

in a global ocean ensemble system using NEMOVAR software.

• Hybrid weight between 0.5-0.8 gave the best results.

=> hybrid better than pure 3DVar or pure ensemble DA.

Future direction: 
• Implementing these ensemble developments in 1/12° global system.
• Implementation in coupled NWP ensemble
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2.3 Ocean and coupled data assimilation – ensemble and hybrid DA

Chrust et al., 2024

• Impact of hybrid DA in the ECMWF ensemble ORAS6 system (11 members) using NEMOVAR software.

• ORAS6 uses the ensemble to determine both the climatological errors and the errors-of-the-day to adjust the 

parameters in an existing parameterised B matrix (rather than use the localised ensemble covariances directly). 

Impact on the SSH innovations standard deviation. 

The errors are plotted relative to those of the baseline 

experiments, which used a parameterised B.

Globally averaged normalised RMS T 

profile errors. The baseline experiment 

with the parameterised B marks the 100% 

line.

-0.05 0.05
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2.3 Ocean and coupled data assimilation – ensemble and hybrid DA

Operational Global Ensemble Kalman Filter

P f =aPdyn +gPstat a =1.03 g = 0.25

Pavel Sakov, Gary Brassington, Prasanth Divakaran, 
Matthew Chamberlain, Saima Aijaz, Jessica Sweeney, 
Xinmei Huang, Stewart Allen

• EnKF-C software. 1/10° resolution system.

• Deterministic ensemble transform KF. Asynchronous ensemble KF.

• Hybrid ensemble Kalman Filter

o 48 dynamic ensemble members

o 144 stationary ensemble members representing low modes 

o Inflation factor (3%)

• Localisation radius (T,S,SLA,SST)≡(450,450,175,150) km

Difference of RMS 
of surface current 
increments

RMS(EnOI) minus 
RMS(EnKF)

EnOI EnKF

Current magnitude at 95m
Summary of improvements

• Reduction in increment variance

• More dynamically balanced increments

• Reduction in abyssal KE noise

• Improved separation of eddies

• Sustaining low signal to noise eddies

• Reduced fictitious baroclinic instability

• Improved skill of ocean currents

• Reduced forecast error growth

• Forecasts beating persistence

Sakov and Oke, 2008
Sakov et al., 2010
Sakov, 2014

Brassington et al., 2023
Chamberlain et al., 2021
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5th Dec 2019

20th Dec 2019

2.3 Ocean and coupled data assimilation – coupled error covariances

• Frolov et al. 2021 used the NRL global coupled ensemble to assess the nature of the 
atmosphere/ocean error covariances.

• Wright et al., 2024 followed this up using the Met Office coupled ensemble to assess how 
variable these covariances are.

• The 44-member coupled ensemble includes the ocean ensemble developments mentioned 
earlier, has a 6-hour cycle, with weakly coupled DA (atmosphere/land/ocean/sea ice).

• Cross-correlations vary diurnally, from day to day, spatially and synoptically.

Daily-mean correlations of SST error and 

10 m wind speed error. 

Contours: daily ensemble-mean 

atmospheric sea-level pressure field.

• Significant positive correlations of SST with 10 m wind speed in mid-latitudes are 

synoptically dependent and tend to be associated with areas of stronger winds. 

• They extend vertically into the ocean, throughout the mixed layer, which can be 

quite deep in these situations

• Negative correlations between SST and 10 m wind speed in tropical oceans 

associated with warm SST and low wind speeds. 

Wright et al., 2024

-0.5 0.5
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Correlations between SST error and 10 m wind speed error as a function of 

the validity time of the six-hourly forecast on December 15, 2019.

• Negative correlations between SST and 10 m wind speed in the tropics associated 

with warm SST and low wind speeds.

• These were linked to diurnal variations in solar radiation, with correlations 

strengthening as the ocean surface heated throughout the day. 

• These correlations were in locations of shallow mixed layers and remained at the 

surface.

00 UTC

06 UTC

12 UTC

18 UTC

Wright et al., 2024

2.3 Ocean and coupled data assimilation – coupled error covariances

-0.5 0.5

• Frolov et al. 2021 used the NRL global coupled ensemble to assess the nature of the 
atmosphere/ocean error covariances.

• Wright et al., 2024 followed this up using the Met Office coupled ensemble to assess how 
variable these covariances are.

• The 44-member coupled ensemble includes the ocean ensemble developments mentioned 
earlier, has a 6-hour cycle, with weakly coupled DA (atmosphere/land/ocean/sea ice).

• Cross-correlations vary diurnally, from day to day, spatially and synoptically.
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• Various other ways to increase the coupling in the DA (see e.g. de Rosnay et al, 2022) including:

• coupled observation operators,

• outer loop coupling, 

• coupled 4DVar with coupled tangent linear/adjoint models.

• Implementation of strongly coupled DA requires a common software infrastructure for the DA in the 

different earth system components, e.g. JEDI, ...

2.3 Ocean and coupled data assimilation – coupled ocean/atmosphere DA

Future directions

• Using flow-dependent correlations, e.g. from coupled ensembles, will be 

key to the effectiveness of strongly coupled DA.

• Differing vertical extents of the correlations imply that the length scales 

used in the vertical localisation of ensemble correlations would need to be 

situation dependent. 

=>  Methods such as those described by Stanley et al. 2024 could be used.
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2. Ongoing developments and future directions

2.1 Observing systems​

2.2 Ocean and coupled modelling 

2.3 Ocean and coupled data assimilation 

2.4 The role of machine learning & digital twins
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2.4 The role of machine learning and digital twins

Soft use of machine learning/AI

vs

Hard use of machine learning/AI

(Heimbach et al., 2024)
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2.4 The role of machine learning and digital twins

Augmenting current systems with AI elements (soft use of AI) Bias-correction

Learning (and correcting) systematic 

state-dependent errors in the air-sea 

heat fluxes through AI, with neural 

networks trained on SST assimilation 

increments over well-observed 

periods.

Application: reanalyses (early 

periods) and forecasts

From Storto et al., 2024 (in review for 

GMD).
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2.4 The role of machine learning and digital twins

Augmenting current systems with AI elements (soft use of AI) Observation and balance operators

NN-based OO for 

radiance data 

assimilation in 

atmospheric models 

(from Liang et al., 

2023)

Towards a radiative 

transfer model-free 

assimilation of satellite 

data

(promising for 

assimilation of L1 

data)

NN-based OO for acoustic 

data assimilation in 

ocean models (from 

Storto et al., 2021)

Avoiding the use of 

complex and strongly non-

linear observation 

operators

(promising also for 

balance operators)
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2.4 The role of machine learning and digital twins

Augmenting current systems with AI elements (soft use of AI) Model parametrizations

Subgrid forcing term
Learnt using CNN architecture 
from filtered and coarse-
grained 1/10° resolution model 
simulations (CM2.6)

from Guillaumin & Zanna, 2021 
JAMES; see also Perezhogin et 
al., 2023

Specifically for the NEMO model, we have a Working Group on Machine Learning and Uncertainty Quantification, to address 
technically online inference (and training) challenges, either through Fortran-linkable libraries or OASIS-callable python interfaces

(see e.g. CNR/ISMAR ANNIF library; ECMWF Infero library; CNRS/IGE/MEOM EOPHIS package)
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2.4 The role of machine learning and digital twins

Substituting (part of) current systems with AI elements (hard use of AI)

(from Barthélémy et al., 2024)

Full-physics or hybrid emulators? End-to-end ML for forecasting? Importance of conventional DA



In
 p

ar
tn

er
sh

ip
w

it
h

2.4 The role of machine learning and digital twins

Re-thinking/Re-coding the ocean numerical models for AI and new HPC architectures

Julia-based model Oceananigans developed by Climate Modeling Alliance, 

CalTech, Silvestri et al., 2023
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2.4 The role of machine learning and digital twins

Skakala et al.

Digital twin for monitoring harmful blooms

In a previous project (CAMPUS) a digital twin was developed 
to track the onset of phytoplankton blooms (Ford et al., 
2022)

SyncED-Ocean improvements

• Higher resolution (1.5km) operational coupled physics-BGC model

• Multiple gliders tracking multiple features

• Mutual cross-calibration of observational data-sets

3 gliders deployed Aug-Sep 2024 tracking Chl 
maxima, oxygen minima and gradient features 

The 1.5 km model includes BGC DA (gliders and satellite) in 
a real time forecasting set-up.

Gliders are directed by a stochastic prediction model. 
The analysis of metrics evaluating the mission is on-going.
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3. Summary and conclusions
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Conclusions

Much progress is being made in observing, modelling, data assimilation to address user needs:

o Improvements in observing systems, DA methods and modelling to improve accuracy

o Increases in model and DA resolution to resolve features of interest, even in the absence of 
constraining observational networks

o Development of ensembles to provide forecast uncertainty information

o Coupled modelling and DA to produce consistent earth system prediction

o These areas are now being augmented by AI/ML methods, which in turn help reduce the 
misalignment of analysis and forecast tools with state-of-the-science computational 
paradigms.

CP-TT meeting
Room III – Tomorrow 12:45
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